Our science team strives to stay current with the very latest research informing our work and is currently updating this list.
Please stay tuned for updates or email support@snipnutrition.com.
The following peer-reviewed studies guide the science behind your CODE Report and customized supplement.
Please see specific citation numbers in your report for the corresponding studies.
- Feskanich D, Weber P, Willett WC, Rockett H, Booth SL, Colditz GA. Vitamin K intake and hip fractures in women: a prospective study. Am J Clin Nutr. 1999 Jan;69(1):74-9. doi: 10.1093/ajcn/69.1.74. PMID: 9925126. https://pubmed.ncbi.nlm.nih.gov/9925126/
- Booth SL, Pennington JA, Sadowski JA. Food sources and dietary intakes of vitamin K-1 (phylloquinone) in the American diet: data from the FDA Total Diet Study. J Am Diet Assoc. 1996 Feb;96(2):149-54. doi: 10.1016/s0002-8223(96)00044-2. PMID: 8557941. https://pubs.acs.org/doi/10.1021/jf00054a030
- Gardner, David G et al. “Vitamin D and the heart.” American journal of physiology. Regulatory, integrative and comparative physiology vol. 305,9 (2013): R969-77. doi:10.1152/ajpregu.00322.2013 Vitamin D and the heart – PMC (nih.gov)
- Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr. 2006 Jul;84(1):18-28. doi: 10.1093/ajcn/84.1.18. Erratum in: Am J Clin Nutr. 2006 Nov;84(5):1253. Dosage error in published abstract; MEDLINE/PubMed abstract corrected. Erratum in: Am J Clin Nutr. 2007 Sep;86(3):809. Dosage error in published abstract; MEDLINE/PubMed abstract corrected. PMID: 16825677. https://pubmed.ncbi.nlm.nih.gov/16825677/
- Imai, K., and K. Nakachi. Cross Sectional Study Of Effects Of Drinking Green Tea On Cardiovascular And Liver Diseases. BMJ: British Medical Journal, vol. 310, no. 6981, 1995, pp. 693–96. JSTOR, http://www.jstor.org/stable/29726685
- Yang SP, Zhang H, Zhang CR, Cheng HD, Yue JM. Alkaloids from Daphniphyllum longeracemosum. J Nat Prod. 2006 Jan;69(1):79-82. doi: 10.1021/np0503449. PMID: 16441073. https://pubmed.ncbi.nlm.nih.gov/16441073/
- Abenavoli L, Capasso R, Milic N, Capasso F. Milk thistle in liver diseases: past, present, future. Phytother Res. 2010 Oct;24(10):1423-32. doi: 10.1002/ptr.3207. PMID: 20564545. https://pubmed.ncbi.nlm.nih.gov/20564545/
- Hanje AJ, Fortune B, Song M, Hill D, McClain C. The use of selected nutrition supplements and complementary and alternative medicine in liver disease. Nutr Clin Pract. 2006 Jun;21(3):255-72. doi: 10.1177/0115426506021003255. PMID: 16772543; PMCID: PMC4239999. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239999/
- Pradhan SC, Girish C. Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian J Med Res. 2006 Nov;124(5):491-504. PMID: 17213517. https://pubmed.ncbi.nlm.nih.gov/17213517/
- Speroni E, Cervellati R, Govoni P, Guizzardi S, Renzulli C, Guerra MC. Efficacy of different Cynara scolymus preparations on liver complaints. J Ethnopharmacol. 2003 Jun;86(2-3):203-11. doi: 10.1016/s0378-8741(03)00076-x. PMID: 12738088. https://pubmed.ncbi.nlm.nih.gov/12738088/
- Nho CW, Jeffery E. The synergistic upregulation of phase II detoxification enzymes by glucosinolate breakdown products in cruciferous vegetables. Toxicol Appl Pharmacol. 2001 Jul 15;174(2):146-52. doi: 10.1006/taap.2001.9207. PMID: 11446830. https://pubmed.ncbi.nlm.nih.gov/11446830/
- Nestle M. Broccoli sprouts as inducers of carcinogen-detoxifying enzyme systems: clinical, dietary, and policy implications. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11149-51. doi: 10.1073/pnas.94.21.11149. PMID: 9326574; PMCID: PMC34511. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC34511/
- Bank G, Kagan D, Madhavi D. Coenzyme Q10: Clinical Update and Bioavailability. Journal of Evidence-Based Complementary & Alternative Medicine. 2011;16(2):129-137. Coenzyme Q10: Clinical Update and Bioavailability – Ginny Bank, Daniel Kagan, Doddabele Madhavi, 2011 (sagepub.com)
- Nakagawa T, Yokozawa T. Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol. 2002 Dec;40(12):1745-50. doi: 10.1016/s0278-6915(02)00169-2. PMID: 12419687. https://pubmed.ncbi.nlm.nih.gov/12419687/
- Pillai SP, Mitscher LA, Menon SR, Pillai CA, Shankel DM. Antimutagenic/antioxidant activity of green tea components and related compounds. J Environ Pathol Toxicol Oncol. 1999;18(3):147-58. PMID: 15281227. https://pubmed.ncbi.nlm.nih.gov/15281227/
- Ravichandran, Srividhya & Jyothilakshmi, Vasavan & Arulmathi, Karpagavinayagam & Senthilkumaran, Vadivel & Kalaiselvi, Periandavan. (2008). Attenuation of senescence-induced oxidative exacerbations in aged rat brain by (−)-epigallocatechin-3-gallate. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience. 26. 217-23. 10.1016/j.ijdevneu.2007.12.003. https://www.researchgate.net/publication/5645001_Attenuation_of_senescence-induced_oxidative_exacerbations_in_aged_rat_brain_by_–epigallocatechin-3-gallate
- Kim MJ, Lee SD, Kim DR, Kong YH, Sohn WS, Ki SS, Kim J, Kim YC, Han CJ, Lee JO, Nam HS, Park YH, Kim CH, Yi KH, Lee YY, Jeong SH. Use of complementary and alternative medicine among Korean cancer patients. Korean J Intern Med. 2004 Dec;19(4):250-6. doi: 10.3904/kjim.2004.19.4.250. PMID: 15683114; PMCID: PMC4531582. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531582/
- Hu Y, Guo DH, Liu P, Cao JJ, Wang YP, Yin J, Zhu Y, Rahman K. Bioactive components from the tea polyphenols influence on endogenous antioxidant defense system and modulate inflammatory cytokines after total-body irradiation in mice. Phytomedicine. 2011 Aug 15;18(11):970-5. doi: 10.1016/j.phymed.2011.02.012. Epub 2011 Apr 17. PMID: 21498061. https://pubmed.ncbi.nlm.nih.gov/21498061/
- Antonello M, Montemurro D, Bolognesi M, Di Pascoli M, Piva A, Grego F, Sticchi D, Giuliani L, Garbisa S, Rossi GP. Prevention of hypertension, cardiovascular damage and endothelial dysfunction with green tea extracts. Am J Hypertens. 2007 Dec;20(12):1321-8. doi: 10.1016/j.amjhyper.2007.08.006. PMID: 18047924. https://pubmed.ncbi.nlm.nih.gov/18047924/
- M. Mamunur Rahman, Takashi Ichiyanagi, Tadazumi Komiyama, Yoshihiko Hatano & Tetsuya Konishi (2006) Superoxide radical- and peroxynitrite-scavenging activity of anthocyanins; structure-activity relationship and their synergism, Free Radical Research, 40:9, 993-1002, DOI: 10.1080/10715760600815322
- Fursova AZh, Gesarevich OG, Gonchar AM, Trofimova NA, Kolosova NG. Dietary supplementation with bilberry extract prevents macular degeneration and cataracts in senesce-accelerated OXYS rats. Adv Gerontol. 2005;16:76-9. Russian. PMID: 16075680. https://pubmed.ncbi.nlm.nih.gov/16075680/
- Kolosova, N. G., Shcheglova, T. V., Sergeeva, S. V., and Loskutova, L. V. (2006) Neurobiol. Aging, 27, 1289–1297. https://www.sciencedirect.com/science/article/abs/pii/S019745800500240X?via%3Dihub
- Fletcher EL, Jobling AI, Greferath U, Mills SA, Waugh M, Ho T, de Iongh RU, Phipps JA, Vessey KA. Studying age-related macular degeneration using animal models. Optom Vis Sci. 2014 Aug;91(8):878-86. doi: 10.1097/OPX.0000000000000322. PMID: 24978866; PMCID: PMC4186726. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186726/
- Belay A. The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in Health management. Journal of the American Nutraceutical Association. 2002;5:27–48. Belay, A. (2002) The Potential Application of Spirulina (Arthrospira) as a Nutritional Health and Therapeutic Supplement in Health Management. Journal of the American Nutraceutical Association, 5, 27-48. – References – Scientific Research Publishing (scirp.org)
- Riss J, Décordé K, Sutra T, Delage M, Baccou JC, Jouy N, Brune JP, Oréal H, Cristol JP, Rouanet JM. Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J Agric Food Chem. 2007 Sep 19;55(19):7962-7. doi: 10.1021/jf070529g. Epub 2007 Aug 16. PMID: 17696484. https://pubmed.ncbi.nlm.nih.gov/17696484/
- Sunde RA. 2006. Selenium. In: Present Knowledge in Nutrition, 9th ed. (Bowman BA, Russell RM, eds.) ILSI Press, Washington, D.C. Pp. 480-497. https://www.semanticscholar.org/paper/Present-Knowledge-in-Nutrition-Bowman-Russell/03725af7d420e94bccb68c051ec4c19b4e5788b1
- Jablonska E, Gromadzinska J, Peplonska B, et al. Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of GPX1. BMC Cancer. 2015 Oct;15:657. DOI: 10.1186/s12885-015-1680-4. PMID: 26446998; PMCID: PMC4597452. https://europepmc.org/article/pmc/pmc4597452
- Kanno S, Shouji A, Asou K, Ishikawa M. Effects of naringin on hydrogen peroxide-induced cytotoxicity and apoptosis in P388 cells. J Pharmacol Sci. 2003 Jun;92(2):166-70. doi: 10.1254/jphs.92.166. PMID: 12832847. https://pubmed.ncbi.nlm.nih.gov/12832847/
- Chen MS, White MC. Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science. 2010 Jan 29;327(5965):566-71. doi: 10.1126/science.1183602. PMID: 20110502. https://pubmed.ncbi.nlm.nih.gov/20110502/
- Kalpana KB, Srinivasan M, Menon VP. Evaluation of antioxidant activity of hesperidin and its protective effect on H2O2 induced oxidative damage on pBR322 DNA and RBC cellular membrane. Mol Cell Biochem. 2009 Mar;323(1-2):21-9. doi: 10.1007/s11010-008-9960-9. Epub 2008 Nov 28. PMID: 19039655. https://pubmed.ncbi.nlm.nih.gov/19039655/
-
Sarikçioğlu, Süreyya Bïlmen, et al. Antioxidant Effect of EGB 761 on Hydrogen Peroxide Induced Lipoperoxidation of G-6-PD Deficient Erythrocytes. Phytotherapy Research, vol. 18, no. 10, 2004, pp. 837–840., https://doi.org/10.1002/ptr.1544
https://agris.fao.org/agris-search/search.do?recordID=US201301004220 - Zeng X, Fang Z, Wu Y, Zhang H. [Chemical constituents of the fruits of Vitex trifolia L]. Zhongguo Zhong Yao Za Zhi. 1996 Mar;21(3):167-8, 191. Chinese. PMID: 9206258. https://pubmed.ncbi.nlm.nih.gov/9206258/
- Tian R, Ye M, Hu L, Li X, Zou H. Selective extraction of peptides in acidic human plasma by porous silica nanoparticles for peptidome analysis with 2-D LC-MS/MS. J Sep Sci. 2007 Sep;30(14):2204-9. doi: 10.1002/jssc.200700156. PMID: 17683044. https://pubmed.ncbi.nlm.nih.gov/17683044/
- Kiruthiga PV, Shafreen RB, Pandian SK, Arun S, Govindu S, Devi KP. Protective effect of silymarin on erythrocyte haemolysate against benzo(a)pyrene and exogenous reactive oxygen species (H2O2) induced oxidative stress. Chemosphere. 2007 Jul;68(8):1511-8. doi: 10.1016/j.chemosphere.2007.03.015. Epub 2007 May 3. PMID: 17481694. [PDF] Protective effect of silymarin on erythrocyte haemolysate against benzo(a)pyrene and exogenous reactive oxygen species (H2O2) induced oxidative stress. | Semantic Scholar
- Zafra-Stone S, et al. Mol Nutr Food Res. 2007.51(6); 675-83. https://pubmed.ncbi.nlm.nih.gov/17481694/
- Manjunatha H, Srinivasan K. Hypolipidemic and antioxidant effects of curcumin and capsaicin in high-fat-fed rats. Can J Physiol Pharmacol. 2007 Jun;85(6):588-96. doi: 10.1139/y07-044. PMID: 17823620. https://pubmed.ncbi.nlm.nih.gov/17823620/
- Maritim AC, Sanders RA, Watkins JB 3rd. Effects of alpha-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats. J Nutr Biochem. 2003 May;14(5):288-94. doi: 10.1016/s0955-2863(03)00036-6. PMID: 12832033. https://pubmed.ncbi.nlm.nih.gov/12832033/
- El Midaoui A, de Champlain J. Prevention of hypertension, insulin resistance, and oxidative stress by alpha-lipoic acid. Hypertension. 2002 Feb;39(2):303-7. doi: 10.1161/hy0202.104345. PMID: 11847202. https://pubmed.ncbi.nlm.nih.gov/11847202/
- Li W, Wei F, Xu B, et al. Effect of stocking density and alpha-lipoic acid on the growth performance, physiological and oxidative stress and immune response of broilers Anim Biosci 2019;32(12):1914-1922. DOI: https://doi.org/10.5713/ajas.18.0939 Animal Bioscience (animbiosci.org)
- Rizwan M, Rodriguez-Blanco I, Harbottle A, Birch-Machin MA, Watson RE, Rhodes LE. Tomato paste rich in lycopene protects against cutaneous photodamage in humans in vivo: a randomized controlled trial. Br J Dermatol. 2011 Jan;164(1):154-62. doi: 10.1111/j.1365-2133.2010.10057.x. Epub 2010 Nov 29. PMID: 20854436. https://pubmed.ncbi.nlm.nih.gov/20854436/
- Wilhelm Stahl, Ulrike Heinrich, Sheila Wiseman, Olaf Eichler, Helmut Sies, Hagen Tronnier, Dietary Tomato Paste Protects against Ultraviolet Light–Induced Erythema in Humans, The Journal of Nutrition, Volume 131, Issue 5, May 2001, Pages 1449–1451, https://doi.org/10.1093/jn/131.5.1449
- Masquerlier J, Dumon MC, Dumas J. Stabilization of collagen by procyanidolic oligomers. Acta Therapy. 1981;7:101–105. Bioflavonoids: Proanthocyanidins and Quercetin and Their Potential Roles in Treating Musculoskeletal Conditions (jospt.org)
- Bombardelli, E. and Morazzoni, P. (1997) Cucurbita pepo L. Fitoterapia, 68, 291-302. https://www.semanticscholar.org/paper/Cucurbita-pepo-L-Bombardelli-Morazzoni/5e25ae2fa6114e5bbcc960d080688a370bbe7672
- Madhan B, Krishnamoorthy G, Rao JR, Nair BU. Role of green tea polyphenols in the inhibition of collagenolytic activity by collagenase. Int J Biol Macromol. 2007 Jun 1;41(1):16-22. doi: 10.1016/j.ijbiomac.2006.11.013. Epub 2006 Dec 12. PMID: 17207851. https://pubmed.ncbi.nlm.nih.gov/17207851/
- J Bae JY, Choi JS, Choi YJ, et al. (-)Epigallocatechin gallate hampers collagen destruction and collagenase activation in ultraviolet-B-irradiated human dermal fibroblasts: involvement of mitogen-activated protein kinase. Food and Chemical Toxicology : an International Journal Published for the British Industrial Biological Research Association. 2008 Apr;46(4):1298-1307. https://europepmc.org/article/med/18226437
- Challem J, Dolby V: Homocysteine: the new “cho-lesterol.” New Canaan: Keats Publishing. 1996. Homocysteine: The New “Cholesterol”: Challem, Jack, Dolby, Victoria: 9780879837228: Amazon.com: Books
- Schnyder G, Roffi M, Flammer Y, Pin R, Hess OM. Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: the Swiss Heart study: a randomized controlled trial. JAMA. 2002 Aug 28;288(8):973-9. doi: 10.1001/jama.288.8.973. PMID: 12190367. https://pubmed.ncbi.nlm.nih.gov/12190367/
- Krajcovicová-Kudlácková, Marica & Valachovičová, Martina & Blazícek, Pavel. (2013). Seasonal Folate Serum Concentrations at Different Nutrition. Central European journal of public health. 21. 36-8. 10.21101/cejph.a3785. Seasonal folate serum concentrations at different nutrition – PubMed (nih.gov)
- Toth PP. High-density lipoprotein and cardiovascular risk. Circulation. 2004 Apr 20;109(15):1809-12. doi: 10.1161/01.CIR.0000126889.97626.B8. PMID: 15096460. https://pubmed.ncbi.nlm.nih.gov/15096460/
- Zhang, Ying et al. “Ubiquinol is superior to ubiquinone to enhance Coenzyme Q10 status in older men.” Food & function vol. 9,11 (2018): 5653-5659. doi:10.1039/c8fo00971f Ubiquinol is superior to ubiquinone to enhance Coenzyme Q10 status in older men – PubMed (nih.gov)
- Pajares MA, Pérez-Sala D. Betaine homocysteine S-methyltransferase: just a regulator of homocysteine metabolism? Cell Mol Life Sci. 2006 Dec;63(23):2792-803. doi: 10.1007/s00018-006-6249-6. PMID: 17086380. https://pubmed.ncbi.nlm.nih.gov/17086380/
- “Influence of oral S-adenosylmethionine on plasma 5-methyltetrahydrofolate, S-adenosylhomocysteine, homocysteine and methionine in healthy humans.” The Journal of pharmacology and experimental therapeutics vol. 282,2 (1997): 845-50. Influence of oral S-adenosylmethionine on plasma 5-methyltetrahydrofolate, S-adenosylhomocysteine, homocysteine and methionine in healthy humans – PubMed (nih.gov)
- Steenge GR, Verhoef P, Katan MB. Betaine supplementation lowers plasma homocysteine in healthy men and women. J Nutr. 2003 May;133(5):1291-5. doi: 10.1093/jn/133.5.1291. PMID: 12730412. https://pubmed.ncbi.nlm.nih.gov/12730412/
- Chao WW, Lin BF. Bioactivities of major constituents isolated from Angelica sinensis (Danggui). Chin Med. 2011 Aug 19;6:29. doi: 10.1186/1749-8546-6-29. PMID: 21851645; PMCID: PMC3170324. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170324/
- Pan SY, Chen SB, Dong HG, Yu ZL, Dong JC, Long ZX, Fong WF, Han YF, Ko KM. New perspectives on chinese herbal medicine (zhong-yao) research and development. Evid Based Complement Alternat Med. 2011;2011:403709. doi: 10.1093/ecam/neq056. Epub 2011 Mar 10. PMID: 21785622; PMCID: PMC3135515. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135515/
- Goulding CW, Matthews RG. Cobalamin-dependent methionine synthase from Escherichia coli: involvement of zinc in homocysteine activation. Biochemistry. 1997 Dec 16;36(50):15749-57. doi: 10.1021/bi971988l. PMID: 9398304. https://pubmed.ncbi.nlm.nih.gov/9398304/
- Craig, Stuart A S. “Betaine in human nutrition.” The American journal of clinical nutrition vol. 80,3 (2004): 539-49. doi:10.1093/ajcn/80.3.539 Betaine in human nutrition – PubMed (nih.gov)
- Detopoulou P, Panagiotakos DB, Antonopoulou S, Pitsavos C, Stefanadis C. Dietary choline and betaine intakes in relation to concentrations of inflammatory markers in healthy adults: the ATTICA study. Am J Clin Nutr. 2008 Feb;87(2):424-30. doi: 10.1093/ajcn/87.2.424. PMID: 18258634. Dietary choline and betaine intakes in relation to concentrations of inflammatory markers in healthy adults: the ATTICA study – PubMed (nih.gov)
- Rajaie S, Esmaillzadeh A. Dietary choline and betaine intakes and risk of cardiovascular diseases: review of epidemiological evidence. ARYA Atheroscler. 2011 Summer;7(2):78-86. PMID: 22577451; PMCID: PMC3347848. https://pubmed.ncbi.nlm.nih.gov/22577451/
- Chiuve SE, Giovannucci EL, Hankinson SE, Zeisel SH, Dougherty LW, Willett WC, Rimm EB. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Am J Clin Nutr. 2007 Oct;86(4):1073-81. doi: 10.1093/ajcn/86.4.1073. PMID: 17921386; PMCID: PMC2430894. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430894/
- Fohr IP, Prinz-Langenohl R, Brönstrup A, Bohlmann AM, Nau H, Berthold HK, Pietrzik K. 5,10-Methylenetetrahydrofolate reductase genotype determines the plasma homocysteine-lowering effect of supplementation with 5-methyltetrahydrofolate or folic acid in healthy young women. Am J Clin Nutr. 2002 Feb;75(2):275-82. doi: 10.1093/ajcn/75.2.275. PMID: 11815318.. https://pubmed.ncbi.nlm.nih.gov/11815318/
- Sueoka N, Suganuma M, Sueoka E, Okabe S, Matsuyama S, Imai K, Nakachi K, Fujiki H. A new function of green tea: prevention of lifestyle-related diseases. Ann N Y Acad Sci. 2001 Apr;928:274-80. doi: 10.1111/j.1749-6632.2001.tb05656.x. PMID: 11795518. https://pubmed.ncbi.nlm.nih.gov/11795518/
- Cao H., Kelly, M.A., Kari, F. et al. Green tea increases anti-inflammatory tristetraprolin and decreases pro-inflammatory tumor necrosis factor mRNA levels in rats. J Inflamm 4, 1 (2007 The Journal of Inflammation | Journal of Inflammation | Full Text (biomedcentral.com)
- Chen PC, Lo YH, Huang SY, Liu HL, Yao ZK, Chang CI, Wen ZH. The anti-inflammatory properties of ethyl acetate fraction in ethanol extract from Sarcodia suiae sp. alleviates atopic dermatitis-like lesion in mice. Biosci Biotechnol Biochem. 2022 Apr 21;86(5):646-654. doi: 10.1093/bbb/zbac028. PMID: 35218182. https://pubmed.ncbi.nlm.nih.gov/35218182/
- Wahyudi, Sianne, and Djanggan Sargowo. “Green tea polyphenols inhibit oxidized LDL-induced NF-KB activation in human umbilical vein endothelial cells.” Acta medica Indonesiana vol. 39,2 (2007): 66-70. Green tea polyphenols inhibit oxidized LDL-induced NF-KB activation in human umbilical vein endothelial cells – PubMed (nih.gov)
- Akhtar N, Haqqi TM. Epigallocatechin-3-gallate suppresses the global interleukin-1beta-induced inflammatory response in human chondrocytes. Arthritis Res Ther. 2011 Jun 17;13(3):R93. doi: 10.1186/ar3368. PMID: 21682898; PMCID: PMC3218908. https://pubmed.ncbi.nlm.nih.gov/21682898/
- Kaitlyn E. Redforda,Salomé Rognantb ,homas A. Jeppsb,Geoffrey W. Abbotta “KCNQ5 Potassium Channel Activation Underlies Vasodilation by Tea” Cell Physiol Biochem. 2009.24(5-6): 503-10. https://www.cellphysiolbiochem.com/Articles/000337/
- Bogdanski P, Suliburska J, Szulinska M, Stepien M, Pupek-Musialik D, Jablecka A. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res. 2012 Jun;32(6):421-7. doi: 10.1016/j.nutres.2012.05.007. Epub 2012 Jun 20. PMID: 22749178. https://pubmed.ncbi.nlm.nih.gov/22749178/
- Kawaguchi, Kiichiro et al. “Effects of antioxidant polyphenols on TNF-alpha-related diseases.” Current topics in medicinal chemistry vol. 11,14 (2011): 1767-79. doi:10.2174/156802611796235152 Effects of antioxidant polyphenols on TNF-alpha-related diseases – PubMed (nih.gov)
- Adams LS, Seeram NP, Aggarwal BB, Takada Y, Sand D, Heber D. Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells. J Agric Food Chem. 2006 Feb 8;54(3):980-5. doi: 10.1021/jf052005r. PMID: 16448212. https://pubmed.ncbi.nlm.nih.gov/16448212/
- Sen CK. Antioxidant and redox regulation of cellular signaling: introduction. Med Sci Sports Exerc. 2001 Mar;33(3):368-70. doi: 10.1097/00005768-200103000-00005. PMID: 11252060. https://pubmed.ncbi.nlm.nih.gov/11252060/
- Manna SK, Mukhopadhyay A, Van NT, Aggarwal BB. Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. J Immunol. 1999 Dec 15;163(12):6800-9. PMID: 10586080. https://pubmed.ncbi.nlm.nih.gov/10586080/
- Zi X, Mukhtar H, Agarwal R. Novel cancer chemopreventive effects of a flavonoid antioxidant silymarin: inhibition of mRNA expression of an endogenous tumor promoter TNF alpha. Biochem Biophys Res Commun. 1997 Oct 9;239(1):334-9. doi: 10.1006/bbrc.1997.7375. PMID: 9345320. https://pubmed.ncbi.nlm.nih.gov/9345320/
- Ekiz, E., Oz, E., Abd El-Aty, A. M., Proestos, C., Brennan, C., Zeng, M., Tomasevic, I., Elobeid, T., Çadırcı, K., Bayrak, M., & Oz, F. (2023). Exploring the Potential Medicinal Benefits of Ganoderma lucidum: From Metabolic Disorders to Coronavirus Infections. Foods, 12(7). https://doi.org/10.3390/foods12071512
- Hajjaj H, Macé C, Roberts M, Niederberger P, Fay LB. Effect of 26-oxygenosterols from Ganoderma lucidum and their activity as cholesterol synthesis inhibitors. Appl Environ Microbiol. 2005 Jul;71(7):3653-8. doi: 10.1128/AEM.71.7.3653-3658.2005. PMID: 16000773; PMCID: PMC1168986. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1168986/
- Kubo K, Nanba H. Anti-hyperliposis effect of maitake fruit body (Grifola frondosa). I. Biol Pharm Bull. 1997 Jul;20(7):781-5. doi: 10.1248/bpb.20.781. PMID: 9255420. https://pubmed.ncbi.nlm.nih.gov/9255420/
- Fukushima M, Ohashi T, Fujiwara Y, Sonoyama K, Nakano M. Cholesterol-Lowering Effects of Maitake (Grifola frondosa) Fiber, Shiitake (Lentinus edodes) Fiber, and Enokitake (Flammulina velutipes) Fiber in Rats. Experimental Biology and Medicine. 2001;226(8):758-765. https://journals.sagepub.com/doi/10.1177/153537020222600808
- Yamada S, Kawaguchi H, Yamada T, Guo X, Matsuo K, Hamada T, Miura N, Tasaki T, Tanimoto A. Cholic Acid Enhances Visceral Adiposity, Atherosclerosis and Nonalcoholic Fatty Liver Disease in Microminipigs. J Atheroscler Thromb. 2017 Nov 1;24(11):1150-1166. doi: 10.5551/jat.39909. Epub 2017 May 11. PMID: 28496045; PMCID: PMC5684480. https://pubmed.ncbi.nlm.nih.gov/28496045/
- Emmert DH, Kirchner JT. The role of vitamin E in the prevention of heart disease. Arch Fam Med. 1999 Nov-Dec;8(6):537-42. doi: 10.1001/archfami.8.6.537. PMID: 10575394. https://pubmed.ncbi.nlm.nih.gov/10575394/
- Pryor WA. Vitamin E and heart disease: basic science to clinical intervention trials. Free Radic Biol Med. 2000 Jan 1;28(1):141-64. doi: 10.1016/s0891-5849(99)00224-5. PMID: 10656300. https://pubmed.ncbi.nlm.nih.gov/10656300/
- Jeon SM, Park YB, Kwon OS, Huh TL, Lee WH, Do KM, Park T, Choi MS. Vitamin E supplementation alters HDL-cholesterol concentration and paraoxonase activity in rabbits fed high-cholesterol diet: comparison with probucol. J Biochem Mol Toxicol. 2005;19(5):336-46. doi: 10.1002/jbt.20098. PMID: 16292755. https://pubmed.ncbi.nlm.nih.gov/16292755/
- Motta S, Letellier C, Ropert M, Motta C, Thiébault JJ. Protecting effect of vitamin E supplementation on submaximal exercise-induced oxidative stress in sedentary dogs as assessed by erythrocyte membrane fluidity and paraoxonase-1 activity. Vet J. 2009 Sep;181(3):288-95. doi: 10.1016/j.tvjl.2008.03.013. Epub 2008 May 13. PMID: 18479950.. https://pubmed.ncbi.nlm.nih.gov/18479950/
- Tsakiris S, Karikas GA, Parthimos T, Tsakiris T, Bakogiannis C, Schulpis KH. Alpha-tocopherol supplementation prevents the exercise-induced reduction of serum paraoxonase 1/arylesterase activities in healthy individuals. Eur J Clin Nutr. 2009 Feb;63(2):215-21. doi: 10.1038/sj.ejcn.1602918. Epub 2007 Sep 19. PMID: 17882129.. https://pubmed.ncbi.nlm.nih.gov/17882129/
- Walker AF, Marakis G, Morris AP, Robinson PA. Promising hypotensive effect of hawthorn extract: a randomized double-blind pilot study of mild, essential hypertension. Phytother Res. 2002 Feb;16(1):48-54. doi: 10.1002/ptr.947. PMID: 11807965. https://pubmed.ncbi.nlm.nih.gov/11807965/
- Walker AF. Herbal medicine: the science of the art. Proc Nutr Soc. 2006 May;65(2):145-52. doi: 10.1079/pns2006487. PMID: 16672075. https://pubmed.ncbi.nlm.nih.gov/16672075/
- Pittler MH, Guo R, Ernst E. Hawthorn extract for treating chronic heart failure. Cochrane Database Syst Rev. 2008 Jan 23;(1):CD005312. doi: 10.1002/14651858.CD005312.pub2. PMID: 18254076. https://pubmed.ncbi.nlm.nih.gov/18254076/
- Degenring FH, Suter A, Weber M, Saller R. A randomised double blind placebo controlled clinical trial of a standardised extract of fresh Crataegus berries (Crataegisan) in the treatment of patients with congestive heart failure NYHA II. Phytomedicine. 2003;10(5):363-9. doi: 10.1078/0944-7113-00312. PMID: 12833999. A randomised double blind placebo controlled clinical trial of a standardised extract of fresh Crataegus berries (Crataegisan) in the treatment of patients with congestive heart failure NYHA II – PubMed (nih.gov)
- Comín-Colet J, Enjuanes C, González G, Torrens A, Cladellas M, Meroño O, Ribas N, Ruiz S, Gómez M, Verdú JM, Bruguera J. Iron deficiency is a key determinant of health-related quality of life in patients with chronic heart failure regardless of anaemia status. Eur J Heart Fail. 2013 Oct;15(10):1164-72. doi: 10.1093/eurjhf/hft083. Epub 2013 May 22. PMID: 23703106; PMCID: PMC3782146. https://pubmed.ncbi.nlm.nih.gov/23703106/
- Holubarsch CJ, Colucci WS, Meinertz T, Gaus W, Tendera M; Survival and Prognosis: Investigation of Crataegus Extract WS 1442 in CHF (SPICE) trial study group. The efficacy and safety of Crataegus extract WS 1442 in patients with heart failure: the SPICE trial. Eur J Heart Fail. 2008 Dec;10(12):1255-63. doi: 10.1016/j.ejheart.2008.10.004. Epub 2008 Nov 18. PMID: 19019730. https://pubmed.ncbi.nlm.nih.gov/19019730/
- Pittler MH, Schmidt K, Ernst E. Hawthorn extract for treating chronic heart failure: meta-analysis of randomized trials. Am J Med. 2003 Jun 1;114(8):665-74. doi: 10.1016/s0002-9343(03)00131-1. PMID: 12798455. https://pubmed.ncbi.nlm.nih.gov/12798455/
- Inami S, Takano M, Yamamoto M, Murakami D, Tajika K, Yodogawa K, et al. Tea catechin consumption reduces circulating oxidized low-density lipoprotein. Int Heart J 2007; 48:725–732. Tea catechin consumption reduces circulating oxidized low-density lipoprotein – PubMed (nih.gov)
- Yee WL, Wang Q, Agdinaoay T, Dang K, Chang H, Grandinetti A, Franke AA, Theriault A. Green tea catechins decrease apolipoprotein B-100 secretion from HepG2 cells. Mol Cell Biochem. 2002 Jan;229(1-2):85-92. doi: 10.1023/a:1017920527201. PMID: 11936850. https://pubmed.ncbi.nlm.nih.gov/11936850/
- Goto T, Saito Y, Morikawa K, Kanamaru Y, Nagaoka S. Epigallocatechin gallate changes mRNA expression level of genes involved in cholesterol metabolism in hepatocytes. Br J Nutr. 2012 Mar;107(6):769-73. doi: 10.1017/S0007114511003758. Epub 2011 Aug 19. PMID: 21851755. https://pubmed.ncbi.nlm.nih.gov/21851755/
- Shoji Tokunaga, Ian R White, Chris Frost, Keitaro Tanaka, Suminori Kono, Shinkan Tokudome, Takashi Akamatsu, Takeshi Moriyama, Hidemoto Zakouji. Green Tea Consumption and Serum Lipids and Lipoproteins in a Population of Healthy Workers in Japan. Annals of Epidemiology. 2002. vol 12, iss 3. 157-165. https://www.sciencedirect.com/science/article/abs/pii/S1047279701003076
- Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M. Flax and flaxseed oil: an ancient medicine & modern functional food. J Food Sci Technol. 2014 Sep;51(9):1633-53. doi: 10.1007/s13197-013-1247-9. Epub 2014 Jan 10. PMID: 25190822; PMCID: PMC4152533. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4152533/
- Aviram M, Dornfeld L, Rosenblat M, Volkova N, Kaplan M, Coleman R, Hayek T, Presser D, Fuhrman B. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am J Clin Nutr. 2000 May;71(5):1062-76. doi: 10.1093/ajcn/71.5.1062. PMID: 10799367. https://pubmed.ncbi.nlm.nih.gov/10799367/
- Ya-Mei Yu, Weng-Cheng Chang, Chieh-Hsi Wu, Su-Yin Chiang, Reduction of oxidative stress and apoptosis in hyperlipidemic rabbits by ellagic acid, The Journal of Nutritional Biochemistry, 2005. Vol 16, Iss 11. 675-681. https://www.sciencedirect.com/science/article/abs/pii/S095528630500080X
- Judd, Suzanne E, and Vin Tangpricha. “Vitamin D deficiency and risk for cardiovascular disease.” The American journal of the medical sciences vol. 338,1 (2009): 40-4. doi:10.1097/MAJ.0b013e3181aaee91 Vitamin D Deficiency and Risk for Cardiovascular Disease – PMC (nih.gov)
- Englisch W, Beckers C, Unkauf M, Ruepp M, Zinserling V. Efficacy of Artichoke dry extract in patients with hyperlipoproteinemia. Arzneimittelforschung. 2000 Mar;50(3):260-5. doi: 10.1055/s-0031-1300196. PMID: 10758778. https://pubmed.ncbi.nlm.nih.gov/10758778/
- Lupattelli G, Marchesi S, Lombardini R, Roscini AR, Trinca F, Gemelli F, Vaudo G, Mannarino E. Artichoke juice improves endothelial function in hyperlipemia. Life Sci. 2004 Dec 31;76(7):775-82. doi: 10.1016/j.lfs.2004.07.018. PMID: 15581909. https://pubmed.ncbi.nlm.nih.gov/15581909/
- Verma S, Buchanan MR, Anderson TJ. Endothelial function testing as a biomarker of vascular disease. Circulation. 2003 Oct 28;108(17):2054-9. doi: 10.1161/01.CIR.0000089191.72957.ED. PMID: 14581384. https://pubmed.ncbi.nlm.nih.gov/14581384/
- Knapen MH, Drummen NE, Smit E, Vermeer C, Theuwissen E. Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Osteoporos Int. 2013 Sep;24(9):2499-507. doi: 10.1007/s00198-013-2325-6. Epub 2013 Mar 23. PMID: 23525894. https://pubmed.ncbi.nlm.nih.gov/23525894/
- Knapen MH, Braam LA, Teunissen KJ, Zwijsen RM, Theuwissen E, Vermeer C. Yogurt drink fortified with menaquinone-7 improves vitamin K status in a healthy population. J Nutr Sci. 2015 Oct 16;4:e35. doi: 10.1017/jns.2015.25. PMID: 26495126; PMCID: PMC4611080. https://pubmed.ncbi.nlm.nih.gov/26495126/
- Knapen MH, Braam LA, Teunissen KJ, Van’t Hoofd CM, Zwijsen RM, van den Heuvel EG, Vermeer C. Steady-state vitamin K2 (menaquinone-7) plasma concentrations after intake of dairy products and soft gel capsules. Eur J Clin Nutr. 2016 Jul;70(7):831-6. doi: 10.1038/ejcn.2016.3. Epub 2016 Feb 24. PMID: 26908424. https://pubmed.ncbi.nlm.nih.gov/26908424/
- Knapen MH, Braam LA, Drummen NE, Bekers O, Hoeks AP, Vermeer C. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial. Thromb Haemost. 2015 May;113(5):1135-44. doi: 10.1160/TH14-08-0675. Epub 2015 Feb 19. PMID: 25694037. https://pubmed.ncbi.nlm.nih.gov/25694037/
- Theuwissen E, Magdeleyns EJ, Braam LA, Teunissen KJ, Knapen MH, Binnekamp IA, van Summeren MJ, Vermeer C. Vitamin K status in healthy volunteers. Food Funct. 2014 Feb;5(2):229-34. doi: 10.1039/c3fo60464k. PMID: 24296867. https://pubmed.ncbi.nlm.nih.gov/24296867/
- Kurnatowska I, Grzelak P, Masajtis-Zagajewska A, Kaczmarska M, Stefańczyk L, Vermeer C, Maresz K, Nowicki M. Effect of vitamin K2 on progression of atherosclerosis and vascular calcification in nondialyzed patients with chronic kidney disease stages 3-5. Pol Arch Med Wewn. 2015;125(9):631-40. doi: 10.20452/pamw.3041. Epub 2015 Jul 15. PMID: 26176325. https://pubmed.ncbi.nlm.nih.gov/26176325/
- Ozdemir MA, Yilmaz K, Abdulrezzak U, Muhtaroglu S, Patiroglu T, Karakukcu M, Unal E. The efficacy of vitamin K2 and calcitriol combination on thalassemic osteopathy. J Pediatr Hematol Oncol. 2013 Nov;35(8):623-7. doi: 10.1097/MPH.0000000000000040. PMID: 24136015. https://pubmed.ncbi.nlm.nih.gov/24136015/
- Theuwissen E, Cranenburg EC, Knapen MH, Magdeleyns EJ, Teunissen KJ, Schurgers LJ, Smit E, Vermeer C. Low-dose menaquinone-7 supplementation improved extra-hepatic vitamin K status, but had no effect on thrombin generation in healthy subjects. Br J Nutr. 2012 Nov 14;108(9):1652-7. doi: 10.1017/S0007114511007185. Epub 2012 Jan 31. PMID: 22289649. https://pubmed.ncbi.nlm.nih.gov/22289649/
- P.E. Norman and J.T. Powell, “Vitamin D and Cardiovascular Disease“ 7 Jan 2014https://doi.org/10.1161/CIRCRESAHA.113.301241Circulation Research. 2014;114:379–393 Vitamin D and Cardiovascular Disease | Circulation Research (ahajournals.org)
- Niu C, Luo Z, Yu L, Ya ng Y, Chen Y, Luo X, Lai F, Song Y. Associations of the APOB rs693 and rs17240441 polymorphisms with plasma APOB and lipid levels: a meta-analysis. Lipids Health Dis. 2017 Sep 6;16(1):166. doi: 10.1186/s12944-017-0558-7. PMID: 28874158; PMCID: PMC5586014. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5586014/
- Xu T, Pagadala V, Mueller DM. Understanding structure, function, and mutations in the mitochondrial ATP synthase. Microb Cell. 2015 Apr 1;2(4):105-125. doi: 10.15698/mic2015.04.197. PMID: 25938092; PMCID: PMC4415626. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415626/
- Sunyer J, Pistelli R, Plana E, Andreani M, Baldari F, Kolz M, Koenig W, Pekkanen J, Peters A, Forastiere F. Systemic inflammation, genetic susceptibility and lung function. Eur Respir J. 2008 Jul;32(1):92-7. doi: 10.1183/09031936.00052507. Epub 2008 Apr 2. PMID: 18385179. https://pubmed.ncbi.nlm.nih.gov/18385179/
- Polyovyy, Viktor & Sydorchuk, Ruslan & Fedonyuk, Larisa & Rotar, Oleksand & Polyovyy, Pavlo & Chepega, Ilya & Fomin, Alexandr. (2021). application of antibiotics and probiotics for prevention of antibiotic-associated disbiosis in patients with generalized peritonitis and enteral dysfunction supports staff awareness. Wiadomosci lekarskie (Warsaw, Poland : 1960). 74. 508-511. 10.36740/WLek202103123. https://www.researchgate.net/publication/350706843_APPLICATION_OF_ANTIBIOTICS_AND_PROBIOTICS_FOR_PREVENTION_OF_ANTIBIOTIC-ASSOCIATED_DISBIOSIS_IN_PATIENTS_WITH_GENERALIZED_PERITONITIS_AND_ENTERAL_DYSFUNCTION_SUPPORTS_STAFF_AWARENESS/citation/download
- Zhang P, Zhang Y, Yang H, Li W, Chen X, Long F. Association between EPHX1 rs1051740 and lung cancer susceptibility: a meta-analysis. Int J Clin Exp Med. 2015 Oct 15;8(10):17941-9. PMID: 26770388; PMCID: PMC4694288. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4694288/
- Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, Wells S, Brüning JC, Nolan PM, Ashcroft FM, Cox RD. Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet. 2010 Dec;42(12):1086-92. doi: 10.1038/ng.713. Epub 2010 Nov 14. PMID: 21076408; PMCID: PMC3018646. https://pubmed.ncbi.nlm.nih.gov/21076408/
- Corella D, Arnett DK, Tucker KL, Kabagambe EK, Tsai M, Parnell LD, Lai CQ, Lee YC, Warodomwichit D, Hopkins PN, Ordovas JM. A high intake of saturated fatty acids strengthens the association between the fat mass and obesity-associated gene and BMI. J Nutr. 2011 Dec;141(12):2219-25. doi: 10.3945/jn.111.143826. Epub 2011 Nov 2. PMID: 22049296; PMCID: PMC3223879. https://pubmed.ncbi.nlm.nih.gov/22049296/
- Hazra A, Kraft P, Selhub J, Giovannucci EL, Thomas G, Hoover RN, Chanock SJ, Hunter DJ. Common variants of FUT2 are associated with plasma vitamin B12 levels. Nat Genet. 2008 Oct;40(10):1160-2. doi: 10.1038/ng.210. Epub 2008 Sep 7. PMID: 18776911; PMCID: PMC2673801. https://pubmed.ncbi.nlm.nih.gov/18776911/
- Smith, C M et al. “Genetic and radiation-reduced somatic cell hybrid sublocalization of the human GSTP1 gene.” Cytogenetics and cell genetics vol. 71,3 (1995): 235-9. doi:10.1159/000134117 Genetic and radiation-reduced somatic cell hybrid sublocalization of the human GSTP1 gene – PubMed (nih.gov)
- Cohen S, Doyle WJ, Skoner DP. Psychological stress, cytokine production, and severity of upper respiratory illness. Psychosom Med. 1999 Mar-Apr;61(2):175-80. doi: 10.1097/00006842-199903000-00009. PMID: 10204970. https://pubmed.ncbi.nlm.nih.gov/10204970/
- Bouzidi, N., Hassine, M., Fodha, H. et al. Association of the methylene-tetrahydrofolate reductase gene rs1801133 C677T variant with serum homocysteine levels, and the severity of coronary artery disease. Sci Rep 10, 10064 (2020). https://doi.org/10.1038/s41598-020-66937-3
- De Mattia E, Toffoli G. C677T and A1298C MTHFR polymorphisms, a challenge for antifolate and fluoropyrimidine-based therapy personalisation. Eur J Cancer. 2009 May;45(8):1333-51. doi: 10.1016/j.ejca.2008.12.004. Epub 2009 Jan 12. PMID: 19144510. https://pubmed.ncbi.nlm.nih.gov/19144510/
- Xu A, Wang W, Jiang X. The roles of MTRR and MTHFR gene polymorphisms in congenital heart diseases: a meta-analysis. Biosci Rep. 2018 Dec 7;38(6):BSR20181160. doi: 10.1042/BSR20181160. PMID: 30333252; PMCID: PMC6435561. https://pubmed.ncbi.nlm.nih.gov/30333252/
- Fischer, A., Schmelzer, C., Rimbach, G. et al. Association between genetic variants in the Coenzyme Q10 metabolism and Coenzyme Q10 status in humans. BMC Res Notes 4, 245 (2011). https://doi.org/10.1186/1756-0500-4-245
- Luo, Z., Pu, L., Muhammad, I. et al. Associations of the PON1 rs662 polymorphism with circulating oxidized low-density lipoprotein and lipid levels: a systematic review and meta-analysis. Lipids Health Dis 17, 281 (2018). https://doi.org/10.1186/s12944-018-0937-8
- Pourvali K, Abbasi M, Mottaghi A. Role of Superoxide Dismutase 2 Gene Ala16Val Polymorphism and Total Antioxidant Capacity in Diabetes and its Complications. Avicenna J Med Biotechnol. 2016 Apr-Jun;8(2):48-56. PMID: 27141263; PMCID: PMC4842242. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4842242/
- Dhruva A, Aouizerat BE, Cooper B, Paul SM, Dodd M, West C, Wara W, Lee K, Dunn LB, Langford DJ, Merriman JD, Baggott C, Cataldo J, Ritchie C, Kober K, Leutwyler H, Miaskowski C. Differences in morning and evening fatigue in oncology patients and their family caregivers. Eur J Oncol Nurs. 2013 Dec;17(6):841-8. doi: 10.1016/j.ejon.2013.06.002. Epub 2013 Sep 5. PMID: 24012189; PMCID: PMC3867806. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867806/
- Saihara K, Kamikubo R, Ikemoto K, Uchida K, Akagawa M. Pyrroloquinoline Quinone, a Redox-Active o-Quinone, Stimulates Mitochondrial Biogenesis by Activating the SIRT1/PGC-1α Signaling Pathway. Biochemistry. 2017 Dec 19;56(50):6615-6625. doi: 10.1021/acs.biochem.7b01185. Epub 2017 Dec 6. PMID: 29185343. https://pubmed.ncbi.nlm.nih.gov/29185343/
- Zhang L, Liu J, Cheng C, Yuan Y, Yu B, Shen A, Yan M. The neuroprotective effect of pyrroloquinoline quinone on traumatic brain injury. J Neurotrauma. 2012 Mar 20;29(5):851-64. doi: 10.1089/neu.2011.1882. Epub 2011 Dec 20. PMID: 22040225; PMCID: PMC3303106. https://pubmed.ncbi.nlm.nih.gov/22040225/
- Harris CB, Chowanadisai W, Mishchuk DO, Satre MA, Slupsky CM, Rucker RB. Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects. J Nutr Biochem. 2013 Dec;24(12):2076-84. doi: 10.1016/j.jnutbio.2013.07.008. PMID: 24231099. https://pubmed.ncbi.nlm.nih.gov/24231099/
- Ozawa, Y. & Kawashima, Motoko & Inoue, S. & Inagaki, E. & Suzuki, A. & Ooe, Emi & Kobayashi, S. & Tsubota, Kazuo. (2014). Bilberry extract supplementation for preventing eye fatigue in video display terminal workers. The journal of nutrition, health & aging. 19. 10.1007/s12603-014-0573-6. https://www.researchgate.net/publication/269775905_Bilberry_extract_supplementation_for_preventing_eye_fatigue_in_video_display_terminal_workers
- Hazra A, Kraft P, Selhub J, Giovannucci EL, Thomas G, Hoover RN, Chanock SJ, Hunter DJ. Common variants of FUT2 are associated with plasma vitamin B12 levels. Nat Genet. 2008 Oct;40(10):1160-2. doi: 10.1038/ng.210. Epub 2008 Sep 7. PMID: 18776911; PMCID: PMC2673801. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673801/
- Ilkhani F, Hosseini B, Saedisomeolia A (2016) Niacin and Oxidative Stress: A Mini-Review. J Nutri Med Diet Care 2:014. https://clinmedjournals.org/articles/jnmdc/journal-of-nutritional-medicine-and-diet-care-jnmdc-2-014.pdf
- Can V., Ahmed Abouelnour A., Locke I., Bligh A., Getting S. P35 The anti-inflammatory effect of silymarin in chondrocytes,
Biochemical Pharmacology, Anti-Inflammatory Effect of Silymarin. 2017. vol. 139, 137. https://www.sciencedirect.com/science/article/abs/pii/S0006295217303593 - Grossman MH, Emanuel BS, Budarf ML. Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1—-q11.2. Genomics. 1992 Apr;12(4):822-5. doi: 10.1016/0888-7543(92)90316-k. PMID: 1572656. https://pubmed.ncbi.nlm.nih.gov/1572656/
- Roth, J.A. (1992). Membrane-bound catechol-O-methyltransferase: A reevaluation of its role in the O-methylation of the catecholamine neurotransmitters. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 120. Reviews of Physiology, Biochemistry and Pharmacology, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036121COMT: Tartar JL., Cabrera D., Knafo S., et al. Warrior Gene Reference. 2020. 19(1):38-42. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039020/
- Tartar JL, Cabrera D, Knafo S, Thomas JD, Antonio J, Peacock CA. The “Warrior” COMT Val/Met Genotype Occurs in Greater Frequencies in Mixed Martial Arts Fighters Relative to Controls. J Sports Sci Med. 2020 Feb 24;19(1):38-42. PMID: 32132825; PMCID: PMC7039020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039020/
- Gaysina D, Xu MK, Barnett JH, Croudace TJ, Wong A, Richards M, Jones PB; LHA genetics group. The catechol-O-methyltransferase gene (COMT) and cognitive function from childhood through adolescence. Biol Psychol. 2013 Feb;92(2):359-64. doi: 10.1016/j.biopsycho.2012.11.007. Epub 2012 Nov 21. PMID: 23178897; PMCID: PMC3580283. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580283/
- Bonetti, L., Bruzzone, S.E.P., Sedghi, N.A., Haumann, N.T., Paunio, T., Kantojärvi, K., Kliuchko, M., Vuust, P., Brattico, E. Brain predictive coding processes are associated to COMT gene Val158Met polymorphism, NeuroImage. 2021. vol 233. 117954. https://www.sciencedirect.com/science/article/pii/S1053811921002317
- Lynch, B. Dirty Genes: A Breakthrough Program to Treat the Root Cause of Illness and Optimize Your Health. HarperCollins Publisher. 2018. https://www.amazon.com/Dirty-Genes-Breakthrough-Program-Optimize/dp/0062698141
- Baune, B., Hohoff, C., Berger, K. et al. Association of the COMT val158met Variant with Antidepressant Treatment Response in Major Depression. Neuropsychopharmacol 33, 924–932 (2008). https://doi.org/10.1038/sj.npp.1301462
- Aronica L, Ordovas JM, Volkov A, Lamb JJ, Stone PM, Minich D, Leary M, Class M, Metti D, Larson IA, Contractor N, Eck B, Bland JS. Genetic Biomarkers of Metabolic Detoxification for Personalized Lifestyle Medicine. Nutrients. 2022 Feb 11;14(4):768. doi: 10.3390/nu14040768. PMID: 35215417; PMCID: PMC8876337. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876337/
- Hodges RE, Minich DM. Modulation of Metabolic Detoxification Pathways Using Foods and Food-Derived Components: A Scientific Review with Clinical Application. J Nutr Metab. 2015;2015:760689. doi: 10.1155/2015/760689. Epub 2015 Jun 16. PMID: 26167297; PMCID: PMC4488002. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488002/
- Hodges RE., Minich DM., Biesalski HK. Modulation of Metabolic Detoxification Pathways Using Foods and Food-Derived Components: A Scientific Review with Clinical Application. 2015. vol 2015. https://www.hindawi.com/journals/jnme/2015/760689/
- Wiegand A, Blickle A, Brückmann C, Weller S, Nieratschker V, Plewnia C. Dynamic DNA Methylation Changes in the COMT Gene Promoter Region in Response to Mental Stress and Its Modulation by Transcranial Direct Current Stimulation. Biomolecules. 2021 Nov 19;11(11):1726. doi: 10.3390/biom11111726. PMID: 34827724; PMCID: PMC8615564. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615564/
- Stein DJ, Newman TK, Savitz J, Ramesar R. Warriors versus worriers: the role of COMT gene variants. CNS Spectr. 2006 Oct;11(10):745-8. doi: 10.1017/s1092852900014863. PMID: 17008817. https://pubmed.ncbi.nlm.nih.gov/17008817/
- Diatchenko L, Slade GD, Nackley AG, Bhalang K, Sigurdsson A, Belfer I, Goldman D, Xu K, Shabalina SA, Shagin D, Max MB, Makarov SS, Maixner W. Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum Mol Genet. 2005 Jan 1;14(1):135-43. doi: 10.1093/hmg/ddi013. Epub 2004 Nov 10. PMID: 15537663. https://pubmed.ncbi.nlm.nih.gov/15537663/
-
Zhu BT. On the mechanism of homocysteine pathophysiology and pathogenesis: a unifying hypothesis. Histol Histopathol. 2002 Oct;17(4):1283-91. doi: 10.14670/HH-17.1283. PMID: 12371153.
https://pubmed.ncbi.nlm.nih.gov/12371153/ - Caldú X, Ottino-González J, Sánchez-Garre C, Hernan I, Tor E, Sender-Palacios MJ, Dreher JC, Garolera M, Jurado MÁ. Effect of the catechol-O-methyltransferase Val 158 Met polymorphism on theory of mind in obesity. Eur Eat Disord Rev. 2019 Jul;27(4):401-409. doi: 10.1002/erv.2665. Epub 2019 Feb 13. PMID: 30761671. https://pubmed.ncbi.nlm.nih.gov/30761671/
- Patanwala IY, Lamvu G, Ledger WJ, Witzeman K, Marvel R, Rapkin A, Bongiovanni AM, Feranec J, Witkin SS. Catechol-O-methyltransferase gene polymorphism and vulvar pain in women with vulvodynia. Am J Obstet Gynecol. 2017 Apr;216(4):395.e1-395.e6. doi: 10.1016/j.ajog.2016.10.020. Epub 2016 Oct 22. PMID: 27780702. https://pubmed.ncbi.nlm.nih.gov/27780702/
- Sljivancanin Jakovljevic T, Kontic-Vucinic O, Nikolic N, Carkic J, Milasin J. VAL158MET catechol O-methyltransferase polymorphism contributes to the development of preeclampsia. Hypertens Pregnancy. 2020 Nov;39(4):471-480. doi: 10.1080/10641955.2020.1843663. Epub 2020 Nov 6. PMID: 33155880. https://pubmed.ncbi.nlm.nih.gov/33155880/
- Bastos P, Gomes T, Ribeiro L. Catechol-O-Methyltransferase (COMT): An Update on Its Role in Cancer, Neurological and Cardiovascular Diseases. Rev Physiol Biochem Pharmacol. 2017;173:1-39. doi: 10.1007/112_2017_2. PMID: 28456872.https://pubmed.ncbi.nlm.nih.gov/28456872/
- Louis CC, D’Esposito M, Moser JS. Investigating interactive effects of worry and the catechol-o-methyltransferase gene (COMT) on working memory performance. Cogn Affect Behav Neurosci. 2021 Dec;21(6):1153-1163. doi: 10.3758/s13415-021-00922-9. Epub 2021 Jun 25. PMID: 34173216; PMCID: PMC9063526.https://pubmed.ncbi.nlm.nih.gov/34173216/
- Serrano JM, Banks JB, Fagan TJ, Tartar JL. The influence of Val158Met COMT on physiological stress responsivity. Stress. 2019 Mar;22(2):276-279. doi: 10.1080/10253890.2018.1553949. Epub 2019 Jan 10. PMID: 30628551.https://pubmed.ncbi.nlm.nih.gov/30628551/
- Fernández-de-Las-Peñas C, Ambite-Quesada S, Florencio LL, Palacios-Ceña M, Ordás-Bandera C, Arendt-Nielsen L. Catechol-O-Methyltransferase Val158Met Polymorphism Is Associated with Anxiety, Depression, and Widespread Pressure Pain Sensitivity in Women with Chronic, but Not Episodic, Migraine. Pain Med. 2019 Jul 1;20(7):1409-1417. doi: 10.1093/pm/pny237. PMID: 30481348.https://pubmed.ncbi.nlm.nih.gov/30481348/
- Dauvilliers Y, Tafti M, Landolt HP. Catechol-O-methyltransferase, dopamine, and sleep-wake regulation. Sleep Med Rev. 2015 Aug;22:47-53. doi: 10.1016/j.smrv.2014.10.006. Epub 2014 Oct 27. PMID: 25466290.https://pubmed.ncbi.nlm.nih.gov/25466290/
- Hooten WM, Hu D, Cunningham JM, Black JL 3rd. Effect of catechol-O-methyltransferase (rs4680) single-nucleotide polymorphism on opioid-induced hyperalgesia in adults with chronic pain. Mol Pain. 2019 Jan-Dec;15:1744806919848929. doi: 10.1177/1744806919848929. PMID: 31041874; PMCID: PMC6509985.https://pubmed.ncbi.nlm.nih.gov/31041874/
- Taravati A, Tohidi F, Moniri M, Kamali K. Catechol-O-methyltransferase Gene Polymorphism (Val158Met) and Development of Pre-eclampsia. Arch Med Res. 2017 Feb;48(2):180-186. doi: 10.1016/j.arcmed.2017.03.006. PMID: 28625321.https://pubmed.ncbi.nlm.nih.gov/28625321/
- Kallionpää RA, Uusitalo E, Peltonen J. Association of Catechol-O-methyltransferase polymorphism Val158Met and mammographic density: A meta-analysis. Gene. 2017 Aug 15;624:34-42. doi: 10.1016/j.gene.2017.04.049. Epub 2017 May 1. PMID: 28473194.https://pubmed.ncbi.nlm.nih.gov/28473194/
- Tworoger SS, Chubak J, Aiello EJ, Yasui Y, Ulrich CM, Farin FM, Stapleton PL, Irwin ML, Potter JD, Schwartz RS, McTiernan A. The effect of CYP19 and COMT polymorphisms on exercise-induced fat loss in postmenopausal women. Obes Res. 2004 Jun;12(6):972-81. doi: 10.1038/oby.2004.119. PMID: 15229337. https://pubmed.ncbi.nlm.nih.gov/15229337/
- Annerbrink K, Westberg L, Nilsson S, Rosmond R, Holm G, Eriksson E. Catechol O-methyltransferase val158-met polymorphism is associated with abdominal obesity and blood pressure in men. Metabolism. 2008 May;57(5):708-11. doi: 10.1016/j.metabol.2008.01.012. PMID: 18442637. https://pubmed.ncbi.nlm.nih.gov/18442637/
- Dostal AM, Arikawa A, Espejo L, Bedell S, Kurzer MS, Stendell-Hollis NR. Green tea extract and catechol-O-methyltransferase genotype modify the post-prandial serum insulin response in a randomised trial of overweight and obese post-menopausal women. J Hum Nutr Diet. 2017 Apr;30(2):166-176. doi: 10.1111/jhn.12408. Epub 2016 Sep 7. PMID: 27600055; PMCID: PMC5340619.https://pubmed.ncbi.nlm.nih.gov/27600055/
- Wallace DL, Aarts E, d’Oleire Uquillas F, Dang LC, Greer SM, Jagust WJ, D’Esposito M. Genotype status of the dopamine-related catechol-O-methyltransferase (COMT) gene corresponds with desirability of “unhealthy” foods. Appetite. 2015 Sep;92:74-80. doi: 10.1016/j.appet.2015.05.004. Epub 2015 May 8. PMID: 25963102; PMCID: PMC4629853.https://pubmed.ncbi.nlm.nih.gov/25963102/
- Hall KT, Jablonski KA, Chen L, Harden M, Tolkin BR, Kaptchuk TJ, Bray GA, Ridker PM, Florez JC; Diabetes Prevention Program Research Group, Mukamal KJ, Chasman DI. Catechol-O-methyltransferase association with hemoglobin A1c. Metabolism. 2016 Jul;65(7):961-967. doi: 10.1016/j.metabol.2016.04.001. Epub 2016 Apr 14. PMID: 27282867; PMCID: PMC4924514.https://pubmed.ncbi.nlm.nih.gov/27282867/
- Bozek T, Blazekovic A, Perkovic MN, Jercic KG, Sustar A, Smircic-Duvnjak L, Outeiro TF, Pivac N, Borovecki F. The influence of dopamine-beta-hydroxylase and catechol O-methyltransferase gene polymorphism on the efficacy of insulin detemir therapy in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2017 Dec 4;9:97. doi: 10.1186/s13098-017-0295-0. PMID: 29225702; PMCID: PMC5716004.https://pubmed.ncbi.nlm.nih.gov/29225702/
- Müller T. Catechol-O-methyltransferase inhibitors in Parkinson’s disease. Drugs. 2015 Feb;75(2):157-74. doi: 10.1007/s40265-014-0343-0. PMID: 25559423.https://pubmed.ncbi.nlm.nih.gov/25559423/
- Ghisari M, Long M, Røge DM, Olsen J, Bonefeld-Jørgensen EC. Polymorphism in xenobiotic and estrogen metabolizing genes, exposure to perfluorinated compounds and subsequent breast cancer risk: A nested case-control study in the Danish National Birth Cohort. Environ Res. 2017 Apr;154:325-333. doi: 10.1016/j.envres.2017.01.020. Epub 2017 Feb 2. PMID: 28157646.https://pubmed.ncbi.nlm.nih.gov/28157646/
- De la Torre R, Corella D, Castañer O, Martínez-González MA, Salas-Salvado J, Vila J, Estruch R, Sorli JV, Arós F, Fiol M, Ros E, Serra-Majem L, Pintó X, Gómez-Gracia E, Lapetra J, Ruiz-Canela M, Basora J, Asensio EM, Covas MI, Fitó M. Protective effect of homovanillyl alcohol on cardiovascular disease and total mortality: virgin olive oil, wine, and catechol-methylation. Am J Clin Nutr. 2017 Jun;105(6):1297-1304. doi: 10.3945/ajcn.116.145813. Epub 2017 Apr 26. Erratum in: Am J Clin Nutr. 2018 Oct 1;108(4):903-906. PMID: 28446500.https://pubmed.ncbi.nlm.nih.gov/28446500/
- The National Institutes of Health landmark human clinical DASH study also recommends increased dietary intake of magnesium and potassium: https://www.nhlbi.nih.gov/education/dash-eating-plan#:~:text=This%20plan%20recommends%3A,beans%2C%20nuts%2C%20and%20vegetable%20oils
- Weinshilboum RM, Otterness DM, Szumlanski CL. Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Toxicol. 1999;39:19-52. doi:10.1146/annurev.pharmtox.39.1.19. PMID: 10331075.https://pubmed.ncbi.nlm.nih.gov/10331075/
- Lee SA, Fowke JH, Lu W, Ye C, Zheng Y, Cai Q, Gu K, Gao YT, Shu XO, Zheng W. Cruciferous vegetables, the GSTP1 Ile105Val genetic polymorphism, and breast cancer risk. Am J Clin Nutr. 2008 Mar;87(3):753-60. doi: 10.1093/ajcn/87.3.753. PMID: 18326615.https://pubmed.ncbi.nlm.nih.gov/18326615/
- Serrano JM, Banks JB, Fagan TJ, Tartar JL. The influence of Val158Met COMT on physiological stress responsivity. Stress. 2019 Mar;22(2):276-279. doi: 10.1080/10253890.2018.1553949. Epub 2019 Jan 10. PMID: 30628551. https://pubmed.ncbi.nlm.nih.gov/30628551/
- Hoth KF, Paul RH, Williams LM, Dobson-Stone C, Todd E, Schofield PR, Gunstad J, Cohen RA, Gordon E. Associations between the COMT Val/Met polymorphism, early life stress, and personality among healthy adults. Neuropsychiatr Dis Treat. 2006 Jun;2(2):219-25. doi: 10.2147/nedt.2006.2.2.219. PMID: 19412467; PMCID: PMC2671786. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671786/
- Ursini G, Bollati V, Fazio L, Porcelli A, Iacovelli L, Catalani A, Sinibaldi L, Gelao B, Romano R, Rampino A, Taurisano P, Mancini M, Di Giorgio A, Popolizio T, Baccarelli A, De Blasi A, Blasi G, Bertolino A. Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. J Neurosci. 2011 May 4;31(18):6692-8. doi: 10.1523/JNEUROSCI.6631-10.2011. PMID: 21543598; PMCID: PMC6632869. https://www.ncbi.nlm.nih.gov/pubmed/21543598
- Dauvilliers Y, Tafti M, Landolt HP. Catechol-O-methyltransferase, dopamine, and sleep-wake regulation. Sleep Med Rev. 2015 Aug;22:47-53. doi: 10.1016/j.smrv.2014.10.006. Epub 2014 Oct 27. PMID: 25466290. https://www.ncbi.nlm.nih.gov/pubmed/25466290
- Dennis Hernaus ,Dina Collip ,Johan Lataster ,Jenny Ceccarini ,Gunther Kenis, Linda Booij, Jens Pruessner, Koen Van Laere, Ruud van Winkel, Jim van Os, Inez Myin-Germeys COMT Val158Met Genotype Selectively Alters Prefrontal [18F]Fallypride Displacement and Subjective Feelings of Stress in Response to a Psychosocial Stress Challenge. Published: June 14, 2013. https://doi.org/10.1371/journal.pone.0065662
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0065662 - Engelhardt LE, Mann FD, Briley DA, Church JA, Harden KP, Tucker-Drob EM. Strong genetic overlap between executive functions and intelligence. J Exp Psychol Gen. 2016 Sep;145(9):1141-59. doi: 10.1037/xge0000195. Epub 2016 Jun 30. PMID: 27359131; PMCID: PMC5001920. https://www.ncbi.nlm.nih.gov/pubmed/27359131
- Corral-Frías NS, Pizzagalli DA, Carré JM, Michalski LJ, Nikolova YS, Perlis RH, Fagerness J, Lee MR, Conley ED, Lancaster TM, Haddad S, Wolf A, Smoller JW, Hariri AR, Bogdan R. COMT Val(158) Met genotype is associated with reward learning: a replication study and meta-analysis. Genes Brain Behav. 2016 Jun;15(5):503-13. doi: 10.1111/gbb.12296. PMID: 27138112; PMCID: PMC4891272.
https://www.ncbi.nlm.nih.gov/pubmed/27138112 - Dennis Hernaus , Dina Collip , Johan Lataster , Jenny Ceccarini , Gunther Kenis, Linda Booij, Jens Pruessner, Koen Van Laere, Ruud van Winkel, Jim van Os, Inez Myin-Germeys
COMT Val158Met Genotype Selectively Alters Prefrontal [18F]Fallypride Displacement and Subjective Feelings of Stress in Response to a Psychosocial Stress Challenge. Published: June 14, 2013 https://doi.org/10.1371/journal.pone.0065662
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0065662 - Zubieta JK, Heitzeg MM, Smith YR, Bueller JA, Xu K, Xu Y, Koeppe RA, Stohler CS, Goldman D. COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science. 2003 Feb 21;299(5610):1240-3. doi: 10.1126/science.1078546. PMID: 12595695. https://www.ncbi.nlm.nih.gov/pubmed/12595695
- Heinz A, Smolka MN. The effects of catechol O-methyltransferase genotype on brain activation elicited by affective stimuli and cognitive tasks. Rev Neurosci. 2006;17(3):359-67. doi: 10.1515/revneuro.2006.17.3.359. PMID: 16878403. https://www.ncbi.nlm.nih.gov/pubmed/16878403
- Stein DJ, Newman TK, Savitz J, Ramesar R. Warriors versus worriers: the role of COMT gene variants. CNS Spectr. 2006 Oct;11(10):745-8. doi: 10.1017/s1092852900014863. PMID: 17008817. https://www.ncbi.nlm.nih.gov/pubmed/17008817
- Goodman JE, Lavigne JA, Wu K, Helzlsouer KJ, Strickland PT, Selhub J, Yager JD. COMT genotype, micronutrients in the folate metabolic pathway and breast cancer risk. Carcinogenesis. 2001 Oct;22(10):1661-5. doi: 10.1093/carcin/22.10.1661. PMID: 11577006. https://www.ncbi.nlm.nih.gov/pubmed/11577006
- Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA. 1995 Oct 4;274(13):1049-57. doi:10.1001/jama.1995.03530130055028. PMID: 7563456. https://www.ncbi.nlm.nih.gov/pubmed/7563456
- Olivera A, Moore TW, Hu F, Brown AP, Sun A, Liotta DC, Snyder JP, Yoon Y, Shim H, Marcus AI, Miller AH, Pace TW. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): anti-inflammatory and anti-cancer properties. Int Immunopharmacol. 2012 Feb;12(2):368-77. doi: 10.1016/j.intimp.2011.12.009. Epub 2011 Dec 22. PMID: 22197802; PMCID: PMC3372981.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3372981/ - Yiqing Wang, Qichun Tang, Peibei Duan & Lihua Yang (2018) Curcumin as a therapeutic agent for blocking NF-κB activation in ulcerative colitis, Immunopharmacology and Immunotoxicology, 40:6, 476-482, DOI: 10.1080/08923973.2018.1469145 https://pubmed.ncbi.nlm.nih.gov/30111198/
- Lin, Y., Liu, H., Bu, L., Chen, C., & Ye, X. (2022). Review of the Effects and Mechanism of Curcumin in the Treatment of Inflammatory Bowel Disease. Frontiers in Pharmacology, 13, 908077. https://doi.org/10.3389/fphar.2022.908077
- Jakubczyk, K., Drużga, A., Katarzyna, J., & Skonieczna-Żydecka, K. (2020). Antioxidant Potential of Curcumin—A Meta-Analysis of Randomized Clinical Trials. Antioxidants, 9(11). https://doi.org/10.3390/antiox9111092
- Joëlle C. Schutten, Michel M. Joosten, Martin H. de Borst, Stephan J.L. Bakker,Magnesium and Blood Pressure: A Physiology-Based Approach, Advances in Chronic Kidney Disease, Volume 25, Issue 3, 2018, Pages 244-250, ISSN 1548-5595, https://doi.org/10.1053/j.ackd.2017.12.003.
- Filippini T, Naska A, Kasdagli MI, Torres D, Lopes C, Carvalho C, Moreira P, Malavolti M, Orsini N, Whelton PK, Vinceti M. Potassium Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc. 2020 Jun 16;9(12):e015719. doi: 10.1161/JAHA.119.015719. Epub 2020 Jun 5. PMID: 32500831; PMCID: PMC7429027. https://pubmed.ncbi.nlm.nih.gov/32500831/#:~:text=The%20BP%2Dlowering%20effects%20of,not%20in%20their%20untreated%20counterparts
- Juraschek, S. P., Guallar, E., & Appel, L. J. (2012). Effects of vitamin C supplementation on blood pressure: A meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition, 95(5), 1079-1088. https://doi.org/10.3945/ajcn.111.027995
- Ried, K. (2020). Garlic lowers blood pressure in hypertensive subjects, improves arterial stiffness and gut microbiota: A review and meta-analysis. Experimental and Therapeutic Medicine, 19(2), 1472-1478. https://doi.org/10.3892/etm.2019.8374
- Nermeen Yosri, Sultan M. Alsharif, Jianbo Xiao, Syed G. Musharraf, Chao Zhao, Aamer Saeed, Ruichang Gao, Noha S. Said, Alessandro Di Minno, Maria Daglia, Zhiming Guo, Shaden A.M. Khalifa, Hesham R. El-Seedi, Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine, Biomedicine & Pharmacotherapy, Volume 158, 2023, 114104, ISSN 0753-3322, https://doi.org/10.1016/j.biopha.2022.114104
- Chan, YS., Cheng, LN., Wu, JH. et al. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacol 19, 245–254 (2011). https://doi.org/10.1007/s10787-010-0062-4 195
- He, L., Zhou, W., Yin, J., He, Q., Zhou, F., & Yu, Y. (2015). Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway. Drug Design, Development and Therapy, 9, 127-146. https://doi.org/10.2147/DDDT.S68501
- Jean M. Bokelmann MD, in Medicinal Herbs in Primary Care, 2022 , ISBN 978-0-323-84676-9
- Revista Brasileira de Farmacognosia, Volume 29, Issue 2, 2019, Pages 198-205, ISSN 0102-695X, Protective effect of Schisandra chinensis total lignans on acute alcoholic-induced liver injury related to inhibiting CYP2E1 activation and activating the Nrf2/ARE signaling pathway, .
https://doi.org/10.1016/j.bjp.2019.01.008. - Tina M. St. John MD, in Integrative Medicine (Fourth Edition), 2018
- Gray, N. E., Magana, A. A., Lak, P., Wright, K. M., Quinn, J., Stevens, J. F., Maier, C. S., & Soumyanath, A. (2018). Centella asiatica – Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochemistry Reviews : Proceedings of the Phytochemical Society of Europe, 17(1), 161. https://doi.org/10.1007/s11101-017-9528-y
- Och A, Och M, Nowak R, Podgórska D, Podgórski R. Berberine, a Herbal Metabolite in the Metabolic Syndrome: The Risk Factors, Course, and Consequences of the Disease. Molecules. 2022 Feb 17;27(4):1351. doi: 10.3390/molecules27041351. PMID: 35209140; PMCID: PMC8874997.
- Gohil KJ, Patel JA, Gajjar AK. Pharmacological Review on Centella asiatica: A Potential Herbal Cure-all. Indian J Pharm Sci. 2010 Sep;72(5):546-56. doi: 10.4103/0250-474X.78519. PMID: 21694984; PMCID: PMC3116297.
- Carboni, L. (2022). Active Folate Versus Folic Acid: The Role of 5-MTHF (Methylfolate) in Human Health. Integrative Medicine: A Clinician’s Journal, 21(3), 36-41. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380836/
- National Institute of Health: B12, https://ods.od.nih.gov/factsheets/VitaminB12-HealthProfessional/#:~:text=Even%20at%20large%20doses%2C%20vitamin,does%20not%20store%20excess%20amounts.
- Santín-Márquez R, Alarcón-Aguilar A, López-Diazguerrero NE, Chondrogianni N, Königsberg M. Sulforaphane – role in aging and neurodegeneration. Geroscience. 2019 Oct;41(5):655-670. doi: 10.1007/s11357-019-00061-7. Epub 2019 Apr 2. PMID: 30941620; PMCID: PMC6885086.
- Resveratrol: https://medlineplus.gov/druginfo/natural/307.html
- Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M, Sharopov F, Martins N, Martorell M, Cho WC. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega. 2020 May 14;5(20):11849-11872. doi: 10.1021/acsomega.0c01818. PMID: 32478277; PMCID: PMC7254783.
- Berman, A. Y., Motechin, R. A., Wiesenfeld, M. Y., & Holz, M. K. (2017). The therapeutic potential of resveratrol: A review of clinical trials. Npj Precision Oncology, 1(1), 1-9. https://doi.org/10.1038/s41698-017-0038-6
- Sharifi-Rad, J., Rayess, Y. E., Rizk, A. A., Sadaka, C., Zgheib, R., Zam, W., Sestito, S., Rapposelli, S., Neffe-Skocińska, K., Zielińska, D., Salehi, B., Setzer, W. N., Dosoky, N. S., Taheri, Y., Beyrouthy, M. E., Martorell, M., Ostrander, E. A., Rasul Suleria, H. A., Cho, W. C., . . . Martins, N. (2020). Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.01021
- Gupta, M., Dey, S., Marbaniang, D., Pal, P., Ray, S., & Mazumder, B. (2020). Grape seed extract: Having a potential health benefits. Journal of Food Science and Technology, 57(4), 1205-1215. https://doi.org/10.1007/s13197-019-04113-w
- Marozik, P., Rudenka, A., Kobets, K., & Rudenka, E. (2021). Vitamin D Status, Bone Mineral Density, and VDR Gene Polymorphism in a Cohort of Belarusian Postmenopausal Women. Nutrients, 13(3). https://doi.org/10.3390/nu13030837
- Song JL, Liu GF, Song YH, Jiao K, Wang SL, Cao TF, Yu J, Wei YX. Positive effect of compound amino acid chelated calcium from the shell and skirt of scallop in an ovariectomized rat model of postmenopausal osteoporosis. Journal of the Science of Food and Agriculture. 2022;102:1363–1371. doi: 10.1002/jsfa.11468. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9339050/
- Niacin (B3) https://www.ncbi.nlm.nih.gov/books/NBK526107/
- Karkos, P. D., Leong, S. C., Karkos, C. D., Sivaji, N., & Assimakopoulos, D. A. (2011). Spirulina in Clinical Practice: Evidence-Based Human Applications. Evidence-Based Complementary and Alternative Medicine : ECAM, 2011. https://doi.org/10.1093/ecam/nen058
- Kumar, A., Ramamoorthy, D., Verma, D. K., Kumar, A., Kumar, N., Kanak, K. R., Marwein, B. M., & Mohan, K. (2022). Antioxidant and phytonutrient activities of Spirulina platensis. Energy Nexus, 6, 100070. https://doi.org/10.1016/j.nexus.2022.100070
- Xu J, Boström AE, Saeed M, Dubey RK, Waeber G, Vollenweider P, Marques-Vidal P, Mwinyi J, Schiöth HB. A genetic variant in the catechol-O-methyl transferase (COMT) gene is related to age-dependent differences in the therapeutic effect of calcium-channel blockers. Medicine (Baltimore). 2017 Jul;96(30):e7029. doi: 10.1097/MD.0000000000007029. PMID: 28746172; PMCID: PMC5627798. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215464/
- Sheng, Y., Bryngelsson, C., & Pero, R. W. (2000). Enhanced DNA repair, immune function and reduced toxicity of C-MED-100™, a novel aqueous extract from Uncaria tomentosa. Journal of Ethnopharmacology, 69(2), 115-126.
View study - Sheng, Y., Pero, R., & Wagner, H. (2000). Treatment of chemotherapy-induced leukopenia in a rat model with aqueous extract from Uncaria tomentosa. Phytomedicine, 7(2), 137-143. https://doi.org/10.1016/S0944-7113(00)80086-0
View study - Sheng, Y., Li, L., Holmgren, K., & Pero, R. (2001). DNA repair enhancement of aqueous extracts of Uncaria tomentosa in a human volunteer study. Phytomedicine, 8(4), 275-282. https://doi.org/10.1078/0944-7113-00045
View study - Lamm, S., Sheng, Y., & Pero, R. (2001). Persistent response to pneumococcal vaccine in individuals supplemented with a novel water soluble extract of Uncaria tomentosa, C-Med-100®. Phytomedicine, 8(4), 267-274. https://doi.org/10.1078/0944-7113-00046
View study - Lamm S, Sheng Y, Pero RW. Persistent response to pneumococcal vaccine in individuals supplemented with a novel water soluble extract of Uncaria tomentosa, C-Med-100. Phytomedicine. 2001 Jul;8(4):267-74. doi: 10.1078/0944-7113-00046. PMID: 11515716.
View study - Hoppe, Catharina & Sheng, Yeap. (2000). Serum Thiols as a Surrogate Estimate of DNA Repair Correlates to Mammalian Life Span. Journal of Anti-Aging Medicine. 3. 241-249. 10.1089/rej.1.2000.3.241. View study
- The Serum Thiol Test: Evidence Supporting the Contention That Serum Thiol Concentrations Are Predictive of DNA Repair Capacity. (In House Study 2005) View study
- ac-11® and NF-KB-inhibition…an additional pathway for why ac-11® improves our natural DNA repair processes. (In house data 2005 and summary 2012) View study
- Montoro P, Carbone V, Quiroz Jde D, De Simone F, Pizza C. Identification and quantification of components in extracts of Uncaria tomentosa by HPLC-ES/MS. Phytochem Anal. 2004 Jan-Feb;15(1):55-64. doi: 10.1002/pca.740. PMID: 14979528. View study
- Campbell, Kent, Bane, Amiri, Pero .Surrogate Indication of DNA Repair in Serum After Long Term Chiropractic Intervention-Retrospective Study. (: Journal Vertebral Subluxation Res. 2005) View study
- Åkesson, C., Pero, R., & Ivars, F. (2003). C-Med 100®, a hot water extract of Uncaria tomentosa, prolongs lymphocyte survival in vivo. Phytomedicine, 10(1), 23-33. https://doi.org/10.1078/094471103321648629 View study
- Akesson, Christina & Lindgren, Hanna & Leanderson, Tomas & Ivars, Fredrik. (2005). Quinic acid is a biologically active component of the Uncaria tomentosa extract C-Med 100®. International immunopharmacology. 5. 219-29. 10.1016/j.intimp.2004.09.028. View study
- Sheng Y, Akesson C, Holmgren K, et al. An active ingredient of Cat’s Claw water extracts identification and efficacy of quinic acid. Journal of Ethnopharmacology. 2005 Jan;96(3):577-584. DOI: 10.1016/j.jep.2004.10.002. PMID: 15619581. View study
- Brunswick Labs, Certificate of Analysis, ORAC Value ac-11® View study
- Pero RW, Amiri A, Sheng Y, Welther M, Rich M. Formulation and in vitro/in vivo evaluation of combining DNA repair and immune enhancing nutritional supplements. Phytomedicine. 2005 Apr;12(4):255-63. doi: 10.1016/j.phymed.2004.01.008. PMID: 15898702. View study
- Pero, Ronald W. et al. “Comparison of a Broad Spectrum Anti-Aging Nutritional Supplement with and without the Addition of a DNA Repair Enhancing Cat’s Claw Extract.” Journal of Anti-aging Medicine 5 (2002): 345-353. View study
- Lund, Harald & Leanderson, Tomas. (2009). Antioxidant Metabolism Induced by Quinic Acid. Increased Urinary Excretion of Tryptophan and Nicotinamide. Phytotherapy research : PTR. 23. 335-46. 10.1002/ptr.2628. View study
- In Vivo Treatment of Humans with Quinic Acid Enhances DNA Repair and Reduces the Influence of Lifestyle Factors on Risk to Disease. (Pero, Lund: International Journal of Biotechnology and Biochemistry 2009) View study
- Historical Development of Uncaria Preparations and Their Related bioactive Components. (Pero: Nova Sciences Publishers, Chapter 10, 2010) View study
- Dietary Quinic Acid Supplied as a Nutritional Supplement AIO + ac-11® leads to Induction of Micromolar Levels of nicotinamide and Tryptophan in the Urine. (Pero, Lund: Phytotherapy Res. 2010) View study
- Carboxy alkyl esters of Uncaria tomentosa augment recovery of sensorineural functions following noise injury. (Guthrie, Gearhart, Fulton and Fechter: Brain Research 2011) View study
- Dynamic Compartmentalization of DNA Repair Proteins Within Spiral Ganglion Neurons in Response to Noise Stress Guthrie, International Journal of Neuroscience, 2012) View study
- Reduced Phosphorylation of Histone Variant H2Ax in the Organ of Corti is associated with Otoprotection from Noise Injury. (Guthrie and Xu, Otolaryngology, 2013) View study
- Preservation of Neural Sensitivity After Noise-Induced Suppression of Sensory Function (Guthrie, Journal of the American Academy of Audiology, 2016) View study
- Noise Induced Hearing Loss (Guthrie, Xu) View study
- Neuroprotective effects of aqueous extracts of Uncaria tomentosa: Insights from 6-OHDA induced cell damage and transgenic Caenorhabditis elegans model. (Shi, Lu, Zhao, Wang, Wilson, Guan, Duan, Chang and Zhao: Neurochemistry International 2013) View study
- ac-11® claims substantiation document. (Zwiren 2010) View Document
- Protectagen® (with ac-11®) Powerful Botanical Support for Inflammation, DNA Repair, Immune Function and Gastrointestinal Healing. (Product Monograph, Prothera Inc, 2010) View study
- CYP450 Study View study
- Exposure to excessively strong sounds may injure the peripheral auditory organ, resulting in hearing loss. Although any sound—noise, speech, music—of sufficient intensity
will damage hearing, such losses are often referred to as “noise-induced hearing loss” (NIHL). (2019) View study - Studies designed to demonstrate improvement in cognitive functions including attention have deployed a large variety of approaches that can be categorized as pharmaceutical..(2023) View study
- Wolfe, Kelly and Wu, Xianzhong and Liu, Rui Hai, Antioxidant Activity of Apple Peel,
Journal of Agricultural and Food Chemistry, volume 51, 3, 609-614
2003, doi 10.1021/jf020782a, PMID: 12537430,
https://doi.org/10.1021/jf020782a - Jensen GS, Attridge VL, Benson KF, Beaman JL, Carter SG, Ager D. Consumption of dried apple peel powder increases joint function and range of motion. J Med Food. 2014 Nov;17(11):1204-13. doi: 10.1089/jmf.2014.0037. Epub 2014 Oct 1. PMID: 25271471; PMCID: PMC4224039.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224039/ - Cantoni GL. S-Adenosylmethionine; a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J Biol Chem. 1953 Sep;204(1):403-16. PMID: 13084611. https://pubmed.ncbi.nlm.nih.gov/13084611/
- Bottiglieri T. S-Adenosyl-L-methionine (SAMe): from the bench to the bedside–molecular basis of a pleiotrophic molecule. Am J Clin Nutr. 2002 Nov;76(5):1151S-7S. doi: 10.1093/ajcn/76/5.1151S. PMID: 12418493. https://pubmed.ncbi.nlm.nih.gov/12418493/
- Hardy ML, Coulter I, Morton SC, et al. S-Adenosyl-L-Methionine for Treatment of Depression, Osteoarthritis, and Liver Disease: Summary. 2003 Aug. In: AHRQ Evidence Report Summaries. Rockville (MD): Agency for Healthcare Research and Quality (US); 1998-2005. 64. Available from: https://www.ncbi.nlm.nih.gov/books/NBK11886/
- Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP. S-Adenosylmethionine and methylation. FASEB J. 1996 Mar;10(4):471-80. PMID: 8647346. https://pubmed.ncbi.nlm.nih.gov/8647346/
- Lu SC, Mato JM. S-adenosylmethionine in liver health, injury, and cancer. Physiol Rev. 2012 Oct;92(4):1515-42. doi: 10.1152/physrev.00047.2011. PMID: 23073625; PMCID: PMC3698976. https://pubmed.ncbi.nlm.nih.gov/23073625/
- Bottiglieri T. Folate, vitamin B₁₂, and S-adenosylmethionine. Psychiatr Clin North Am. 2013 Mar;36(1):1-13. doi: 10.1016/j.psc.2012.12.001. PMID: 23538072. https://pubmed.ncbi.nlm.nih.gov/23538072/
- Giulidori P, Galli-Kienle M, Catto E, Stramentinoli G. Transmethylation, transsulfuration, and aminopropylation reactions of S-adenosyl-L-methionine in vivo. J Biol Chem. 1984 Apr 10;259(7):4205-11. PMID: 6200481. https://pubmed.ncbi.nlm.nih.gov/6200481/
- Lieber CS, Packer L. S-Adenosylmethionine: molecular, biological, and clinical aspects–an introduction. Am J Clin Nutr. 2002 Nov;76(5):1148S-50S. doi: 10.1093/ajcn/76/5.1148S. PMID: 12418492. https://pubmed.ncbi.nlm.nih.gov/12418492/
- Soeken KL, Lee WL, Bausell RB, Agelli M, Berman BM. Safety and efficacy of S-adenosylmethionine (SAMe) for osteoarthritis. J Fam Pract. 2002 May;51(5):425-30. PMID: 12019049. https://pubmed.ncbi.nlm.nih.gov/12019049/
- Frezza M, Surrenti C, Manzillo G, Fiaccadori F, Bortolini M, Di Padova C. Oral S-adenosylmethionine in the symptomatic treatment of intrahepatic cholestasis. A double-blind, placebo-controlled study. Gastroenterology. 1990 Jul;99(1):211-5. doi: 10.1016/0016-5085(90)91250-a. PMID: 2188871. https://pubmed.ncbi.nlm.nih.gov/2188871/
- di Padova C. S-adenosylmethionine in the treatment of osteoarthritis. Review of the clinical studies. Am J Med. 1987 Nov 20;83(5A):60-5. doi: 10.1016/0002-9343(87)90853-9. PMID: 3318441. https://pubmed.ncbi.nlm.nih.gov/3318441/
- Sharma A, Gerbarg P, Bottiglieri T, Massoumi L, Carpenter LL, Lavretsky H, Muskin PR, Brown RP, Mischoulon D; as Work Group of the American Psychiatric Association Council on Research. S-Adenosylmethionine (SAMe) for Neuropsychiatric Disorders: A Clinician-Oriented Review of Research. J Clin Psychiatry. 2017 Jun;78(6):e656-e667. doi: 10.4088/JCP.16r11113. PMID: 28682528; PMCID: PMC5501081. https://pubmed.ncbi.nlm.nih.gov/28682528/
- Mischoulon D, Price LH, Carpenter LL, Tyrka AR, Papakostas GI, Baer L, Dording CM, Clain AJ, Durham K, Walker R, Ludington E, Fava M. A double-blind, randomized, placebo-controlled clinical trial of S-adenosyl-L-methionine (SAMe) versus escitalopram in major depressive disorder. J Clin Psychiatry. 2014 Apr;75(4):370-6. doi: 10.4088/JCP.13m08591. PMID: 24500245; PMCID: PMC5360105. https://pubmed.ncbi.nlm.nih.gov/24500245/
- Bressa GM. S-adenosyl-l-methionine (SAMe) as antidepressant: meta-analysis of clinical studies. Acta Neurol Scand Suppl. 1994;154:7-14. doi: 10.1111/j.1600-0404.1994.tb05403.x. PMID: 7941964. https://pubmed.ncbi.nlm.nih.gov/7941964/
- Levkovitz Y, Alpert JE, Brintz CE, Mischoulon D, Papakostas GI. Effects of S-adenosylmethionine augmentation of serotonin-reuptake inhibitor antidepressants on cognitive symptoms of major depressive disorder. J Affect Disord. 2012 Feb;136(3):1174-8. doi: 10.1016/j.jad.2011.04.059. Epub 2011 Sep 10. PMID: 21911258. https://pubmed.ncbi.nlm.nih.gov/21911258/
- Kagan BL, Sultzer DL, Rosenlicht N, Gerner RH. Oral S-adenosylmethionine in depression: a randomized, double-blind, placebo-controlled trial. Am J Psychiatry. 1990 May;147(5):591-5. doi: 10.1176/ajp.147.5.591. PMID: 2183633. https://pubmed.ncbi.nlm.nih.gov/2183633/
- Smith, A. D., Kim, Y., & Refsum, H. (2008). Is folic acid good for everyone? The American Journal of Clinical Nutrition, 87(3), 517-533. https://doi.org/10.1093/ajcn/87.3.517
- Bailey LB, Gregory JF 3rd. Folate metabolism and requirements. J Nutr. 1999 Apr;129(4):779-82. doi: 10.1093/jn/129.4.779. PMID: 10203550. https://pubmed.ncbi.nlm.nih.gov/10203550/
- Francesco Scaglione & Giscardo Panzavolta (2014) Folate, folic acid and 5-methyltetrahydrofolate are not the same thing, Xenobiotica, 44:5, 480-488, DOI: 10.3109/00498254.2013.845705
- Bailey LB, Gregory JF 3rd. Polymorphisms of methylenetetrahydrofolate reductase and other enzymes: metabolic significance, risks and impact on folate requirement. J Nutr. 1999 May;129(5):919-22. doi: 10.1093/jn/129.5.919. PMID: 10222379. https://pubmed.ncbi.nlm.nih.gov/10222379/
- Botto LD, Yang Q. 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol. 2000 May 1;151(9):862-77. doi: 10.1093/oxfordjournals.aje.a010290. PMID: 10791559. https://academic.oup.com/aje/article/151/9/862/50368?login=false
- Pietrzik K, Bailey L, Shane B. Folic acid and L-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2010 Aug;49(8):535-48. doi: 10.2165/11532990-000000000-00000. PMID: 20608755. https://link.springer.com/article/10.2165/11532990-000000000-00000
- Pol. J. Food Nutr. Sci. 2006, Vol. 15/56, SI 2, pp. 93-99 Folic acid supplementation practice in Europe – plenary lecture Barbara Pietruszka, Anna Brzozowska https://www.researchgate.net/publication/299244174_FOLIC_ACID_SUPPLEMENTATION_PRACTICE_IN_EUROPE_-_PLENARY_LECTURE
- Lamer Y, Prinz-Langenohl R, Brämswig S, Pietrzik K. Red blood cell folate concentrations increase more after supplementation with [6S]-5-methyltetrahydrofolate than with folic acid in women of childbearing age. Am J Clin Nutr. 2006 Jul;84(1):156-61. doi: 10.1093/ajcn/84.1.156. PMID: 16825690. https://www.sciencedirect.com/science/article/pii/S0002916523277850?via%3Dihub
- Prinz-Langenohl R, Brämswig S, Tobolski O, Smulders YM, Smith DE, Finglas PM, Pietrzik K. [6S]-5-methyltetrahydrofolate increases plasma folate more effectively than folic acid in women with the homozygous or wild-type 677C–>T polymorphism of methylenetetrahydrofolate reductase. Br J Pharmacol. 2009 Dec;158(8):2014-21. doi: 10.1111/j.1476-5381.2009.00492.x. PMID: 19917061; PMCID: PMC2807663. https://pubmed.ncbi.nlm.nih.gov/19917061/
- Obeid R, Holzgreve W, Pietrzik K. Is 5-methyltetrahydrofolate an alternative to folic acid for the prevention of neural tube defects? J Perinat Med. 2013 Sep 1;41(5):469-83. doi: 10.1515/jpm-2012-0256. PMID: 23482308. https://pubmed.ncbi.nlm.nih.gov/23482308/
- Diefenbach K, Trummer D, Ebert F, Lissy M, Koch M, Rohde B, Blode H. EE-drospirenone-levomefolate calcium versus EE-drospirenone + folic acid: folate status during 24 weeks of treatment and over 20 weeks following treatment cessation. Int J Womens Health. 2013 Apr 11;5:149-63. doi: 10.2147/IJWH.S37254. PMID: 23610531; PMCID: PMC3628530. https://pubmed.ncbi.nlm.nih.gov/23610531/
- Nelson AL. Comprehensive evaluation of Safyral(®) 2012. Womens Health (Lond). 2012 Nov;8(6):619-33. doi: 10.2217/whe.12.50. PMID: 23181528. https://pubmed.ncbi.nlm.nih.gov/23181528/
- Blode H, Klipping C, Richard F, Trummer D, Rohde B, Diefenbach K. Bioequivalence study of an oral contraceptive containing ethinylestradiol/drospirenone/levomefolate calcium relative to ethinylestradiol/drospirenone and to levomefolate calcium alone. Contraception. 2012 Feb;85(2):177-84. doi: 10.1016/j.contraception.2011.05.015. Epub 2011 Jul 19. PMID: 22067789. https://pubmed.ncbi.nlm.nih.gov/22067789/
- Lamers Y. Folate recommendations for pregnancy, lactation, and infancy. Ann Nutr Metab. 2011;59(1):32-7. doi: 10.1159/000332073. Epub 2011 Nov 25. PMID: 22123635. https://pubmed.ncbi.nlm.nih.gov/22123635/
- Nguyen P, Tam C, O’Connor DL, Kapur B, Koren G. Steady state folate concentrations achieved with 5 compared with 1.1 mg folic acid supplementation among women of childbearing age. Am J Clin Nutr. 2009 Mar;89(3):844-52. doi: 10.3945/ajcn.2008.26878. Epub 2009 Jan 21. PMID: 19158211. https://pubmed.ncbi.nlm.nih.gov/19158211/
- Obeid R, Kasoha M, Kirsch SH, Munz W, Herrmann W. Concentrations of unmetabolized folic acid and primary folate forms in pregnant women at delivery and in umbilical cord blood. Am J Clin Nutr. 2010 Dec;92(6):1416-22. doi: 10.3945/ajcn.2010.29361. Epub 2010 Sep 15. PMID: 20844072. https://pubmed.ncbi.nlm.nih.gov/20844072/
- Bentley S, Hermes A, Phillips D, Daoud YA, Hanna S. Comparative effectiveness of a prenatal medical food to prenatal vitamins on hemoglobin levels and adverse outcomes: a retrospective analysis. Clin Ther. 2011 Feb;33(2):204-10. doi: 10.1016/j.clinthera.2011.02.010. Epub 2011 Mar 25. PMID: 21440300. https://pubmed.ncbi.nlm.nih.gov/21440300/
- Nzila A, Okombo J, Molloy AM. Impact of folate supplementation on the efficacy of sulfadoxine/pyrimethamine in preventing malaria in pregnancy: the potential of 5-methyl-tetrahydrofolate. J Antimicrob Chemother. 2014 Feb;69(2):323-30. doi: 10.1093/jac/dkt394. Epub 2013 Oct 14. PMID: 24126794. https://pubmed.ncbi.nlm.nih.gov/24126794/
- Rai V, Yadav U, Kumar P, Yadav SK, Mishra OP. Maternal methylenetetrahydrofolate reductase C677T polymorphism and down syndrome risk: a meta-analysis from 34 studies. PLoS One. 2014 Sep 29;9(9):e108552. doi: 10.1371/journal.pone.0108552. PMID: 25265565; PMCID: PMC4180743. https://pubmed.ncbi.nlm.nih.gov/25265565/
- Houghton LA, Sherwood KL, Pawlosky R, Ito S, O’Connor DL. [6S]-5-Methyltetrahydrofolate is at least as effective as folic acid in preventing a decline in blood folate concentrations during lactation. Am J Clin Nutr. 2006 Apr;83(4):842-50. doi: 10.1093/ajcn/83.4.842. PMID: 16600937. https://pubmed.ncbi.nlm.nih.gov/16600937/
- West AA, Yan J, Perry CA, Jiang X, Malysheva OV, Caudill MA. Folate-status response to a controlled folate intake in nonpregnant, pregnant, and lactating women. Am J Clin Nutr. 2012 Oct;96(4):789-800. doi: 10.3945/ajcn.112.037523. Epub 2012 Aug 29. PMID: 22932279. https://pubmed.ncbi.nlm.nih.gov/22932279/
- Page R, Robichaud A, Arbuckle TE, Fraser WD, MacFarlane AJ. Total folate and unmetabolized folic acid in the breast milk of a cross-section of Canadian women. Am J Clin Nutr. 2017 May;105(5):1101-1109. doi: 10.3945/ajcn.116.137968. Epub 2017 Mar 15. PMID: 28298392. https://pubmed.ncbi.nlm.nih.gov/28298392/
- George L, Mills JL, Johansson AL, Nordmark A, Olander B, Granath F, Cnattingius S. Plasma folate levels and risk of spontaneous abortion. JAMA. 2002 Oct 16;288(15):1867-73. doi: 10.1001/jama.288.15.1867. PMID: 12377085. https://pubmed.ncbi.nlm.nih.gov/12377085/
- Mitchell ES, Conus N, Kaput J. B vitamin polymorphisms and behavior: evidence of associations with neurodevelopment, depression, schizophrenia, bipolar disorder and cognitive decline. Neurosci Biobehav Rev. 2014 Nov;47:307-20. doi: 10.1016/j.neubiorev.2014.08.006. Epub 2014 Aug 27. PMID: 25173634. https://pubmed.ncbi.nlm.nih.gov/25173634/
- Leung BM, Kaplan BJ, Field CJ, Tough S, Eliasziw M, Gomez MF, McCargar LJ, Gagnon L; APrON Study Team. Prenatal micronutrient supplementation and postpartum depressive symptoms in a pregnancy cohort. BMC Pregnancy Childbirth. 2013 Jan 16;13:2. doi: 10.1186/1471-2393-13-2. PMID: 23324464; PMCID: PMC3585741. https://pubmed.ncbi.nlm.nih.gov/23324464/
- Ellsworth-Bowers ER, Corwin EJ. Nutrition and the psychoneuroimmunology of postpartum depression. Nutr Res Rev. 2012 Jun;25(1):180-92. doi: 10.1017/S0954422412000091. PMID: 22853878; PMCID: PMC3564601. https://pubmed.ncbi.nlm.nih.gov/22853878/
- Lewis SJ, Araya R, Leary S, Smith GD, Ness A. Folic acid supplementation during pregnancy may protect against depression 21 months after pregnancy, an effect modified by MTHFR C677T genotype. Eur J Clin Nutr. 2012 Jan;66(1):97-103. doi: 10.1038/ejcn.2011.136. Epub 2011 Jul 20. PMID: 21772318. https://pubmed.ncbi.nlm.nih.gov/21772318/
- Lia M. Nightingale, PhD. Nutritional Factors Affecting Postpartum Depression, Journal of Clinical Chiropractic Pediatrics June 2011; 12(1): 849-860 https://atlas.chiro.org/2014/08/nutritional-factors-affecting-postpartum-depression/
- Greenberg, J. A., Bell, S. J., & Guan, Y. (2011). Folic Acid Supplementation and Pregnancy: More Than Just Neural Tube Defect Prevention. Reviews in Obstetrics and Gynecology, 4(2), 52-59. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218540/
- Devlin AM, Brain U, Austin J, Oberlander TF. Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLoS One. 2010 Aug 16;5(8):e12201. doi: 10.1371/journal.pone.0012201. PMID: 20808944; PMCID: PMC2922376. https://pubmed.ncbi.nlm.nih.gov/20808944/
- Słopien R, Jasniewicz K, Meczekalski B, Warenik-Szymankiewicz A, Lianeri M, Jagodziński PP. Polymorphic variants of genes encoding MTHFR, MTR, and MTHFD1 and the risk of depression in postmenopausal women in Poland. Maturitas. 2008 Nov 20;61(3):252-5. doi: 10.1016/j.maturitas.2008.08.002. Epub 2008 Sep 17. PMID: 18801628. https://pubmed.ncbi.nlm.nih.gov/18801628/
- Bodnar LM, Wisner KL. Nutrition and depression: implications for improving mental health among childbearing-aged women. Biol Psychiatry. 2005 Nov 1;58(9):679-85. doi: 10.1016/j.biopsych.2005.05.009. Epub 2005 Jul 25. PMID: 16040007; PMCID: PMC4288963. https://pubmed.ncbi.nlm.nih.gov/16040007/
- Pick ME, Edwards M, Moreau D, Ryan EA. Assessment of diet quality in pregnant women using the Healthy Eating Index. J Am Diet Assoc. 2005 Feb;105(2):240-6. doi: 10.1016/j.jada.2004.11.028. PMID: 15668682. https://pubmed.ncbi.nlm.nih.gov/15668682/
- Rouillon F, Thalassinos M, Miller HD, Lemperiere T. Folates and post partum depression. J Affect Disord. 1992 Aug;25(4):235-41. doi: 10.1016/0165-0327(92)90081-g. PMID: 1430660. https://pubmed.ncbi.nlm.nih.gov/1430660/
- Cagnacci A, Cannoletta M, Volpe A. High-dose short-term folate administration modifies ambulatory blood pressure in postmenopausal women. A placebo-controlled study. Eur J Clin Nutr. 2009 Oct;63(10):1266-8. doi: 10.1038/ejcn.2009.58. Epub 2009 Jul 15. PMID: 19603054. https://pubmed.ncbi.nlm.nih.gov/19603054/
- Troen AM, Mitchell B, Sorensen B, Wener MH, Johnston A, Wood B, Selhub J, McTiernan A, Yasui Y, Oral E, Potter JD, Ulrich CM. Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women. J Nutr. 2006 Jan;136(1):189-94. doi: 10.1093/jn/136.1.189. PMID: 16365081. https://pubmed.ncbi.nlm.nih.gov/16365081/
- EFSA SCIENTIFIC OPINION Scientific Opinion on Dietary Reference Values for folate1 EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)2,3; European Food Safety Authority (EFSA), Parma, Italy https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2014.3893
- Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Use of multivitamins, intake of B vitamins, and risk of ovulatory infertility. Fertil Steril. 2008 Mar;89(3):668-76. doi: 10.1016/j.fertnstert.2007.03.089. Epub 2007 Jul 10. PMID: 17624345; PMCID: PMC2366795. https://pubmed.ncbi.nlm.nih.gov/17624345/
- Troen AM, Mitchell B, Sorensen B, Wener MH, Johnston A, Wood B, Selhub J, McTiernan A, Yasui Y, Oral E, Potter JD, Ulrich CM. Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women. J Nutr. 2006 Jan;136(1):189-94. doi: 10.1093/jn/136.1.189. PMID: 16365081. https://pubmed.ncbi.nlm.nih.gov/16365081/
- Papakostas GI, Shelton RC, Zajecka JM, Bottiglieri T, Roffman J, Cassiello C, Stahl SM, Fava M. Effect of adjunctive L-methylfolate 15 mg among inadequate responders to SSRIs in depressed patients who were stratified by biomarker levels and genotype: results from a randomized clinical trial. J Clin Psychiatry. 2014 Aug;75(8):855-63. doi: 10.4088/JCP.13m08947. PMID: 24813065. https://pubmed.ncbi.nlm.nih.gov/24813065/
- Shelton RC, Sloan Manning J, Barrentine LW, Tipa EV. Assessing Effects of l-Methylfolate in Depression Management: Results of a Real-World Patient Experience Trial. Prim Care Companion CNS Disord. 2013;15(4):PCC.13m01520. doi: 10.4088/PCC.13m01520. Epub 2013 Aug 29. PMID: 24392264; PMCID: PMC3869616. https://pubmed.ncbi.nlm.nih.gov/24392264/
- Nelson JC. The evolving story of folate in depression and the therapeutic potential of l-methylfolate. Am J Psychiatry. 2012 Dec;169(12):1223-5. doi: 10.1176/appi.ajp.2012.12091207. PMID: 23212050. https://pubmed.ncbi.nlm.nih.gov/23212050/
- Peedicayil J. Role of epigenetics in pharmacotherapy, psychotherapy and nutritional management of mental disorders. J Clin Pharm Ther. 2012 Oct;37(5):499-501. doi: 10.1111/j.1365-2710.2012.01346.x. Epub 2012 Mar 26. PMID: 22449320. https://pubmed.ncbi.nlm.nih.gov/22449320/
- McCaddon A, Hudson PR. L-methylfolate, methylcobalamin, and N-acetylcysteine in the treatment of Alzheimer’s disease-related cognitive decline. CNS Spectr. 2010 Jan;15(1 Suppl 1):2-5; discussion 6. doi: 10.1017/s1092852900027589. PMID: 20397369. https://pubmed.ncbi.nlm.nih.gov/20397369/
- Farah A. The role of L-methylfolate in depressive disorders. CNS Spectr. 2009 Jan;14(1 Suppl 2):2-7. doi: 10.1017/s1092852900003473. PMID: 19169195. https://pubmed.ncbi.nlm.nih.gov/19169195/
- Stahl SM. L-methylfolate: a vitamin for your monoamines. J Clin Psychiatry. 2008 Sep;69(9):1352-3. doi: 10.4088/jcp.v69n0901. PMID: 19193337. https://pubmed.ncbi.nlm.nih.gov/19193337/
- Stahl SM. Novel therapeutics for depression: L-methylfolate as a trimonoamine modulator and antidepressant-augmenting agent. CNS Spectr. 2007 Oct;12(10):739-44. doi: 10.1017/s1092852900015418. PMID: 17934378. https://pubmed.ncbi.nlm.nih.gov/17934378/
- Miller AL. The methylation, neurotransmitter, and antioxidant connections between folate and depression. Altern Med Rev. 2008 Sep;13(3):216-26. PMID: 18950248. https://pubmed.ncbi.nlm.nih.gov/18950248/
- Dayon L, Guiraud SP, Corthésy J, Da Silva L, Migliavacca E, Tautvydaitė D, Oikonomidi A, Moullet B, Henry H, Métairon S, Marquis J, Descombes P, Collino S, Martin FJ, Montoliu I, Kussmann M, Wojcik J, Bowman GL, Popp J. One-carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond. Alzheimers Res Ther. 2017 Jun 17;9(1):43. doi: 10.1186/s13195-017-0270-x. PMID: 28623948; PMCID: PMC5473969. https://pubmed.ncbi.nlm.nih.gov/28623948/
- Smith AD, Refsum H, Bottiglieri T, Fenech M, Hooshmand B, McCaddon A, Miller JW, Rosenberg IH, Obeid R. Homocysteine and Dementia: An International Consensus Statement. J Alzheimers Dis. 2018;62(2):561-570. doi: 10.3233/JAD-171042. PMID: 29480200; PMCID: PMC5836397. https://pubmed.ncbi.nlm.nih.gov/29480200/
- Bottiglieri T. Homocysteine and folate metabolism in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2005 Sep;29(7):1103-12. doi: 10.1016/j.pnpbp.2005.06.021. PMID: 16109454. https://pubmed.ncbi.nlm.nih.gov/16109454/
- Godfrey PS, Toone BK, Carney MW, Flynn TG, Bottiglieri T, Laundy M, Chanarin I, Reynolds EH. Enhancement of recovery from psychiatric illness by methylfolate. Lancet. 1990 Aug 18;336(8712):392-5. doi: 10.1016/0140-6736(90)91942-4. PMID: 1974941. https://pubmed.ncbi.nlm.nih.gov/1974941/
- Ginsberg LD, Oubre AY, Daoud YA. L-methylfolate Plus SSRI or SNRI from Treatment Initiation Compared to SSRI or SNRI Monotherapy in a Major Depressive Episode. Innov Clin Neurosci. 2011 Jan;8(1):19-28. PMID: 21311704; PMCID: PMC3036555. https://pubmed.ncbi.nlm.nih.gov/21311704/
- Passeri M, Cucinotta D, Abate G, Senin U, Ventura A, Stramba Badiale M, Diana R, La Greca P, Le Grazie C. Oral 5′-methyltetrahydrofolic acid in senile organic mental disorders with depression: results of a double-blind multicenter study. Aging (Milano). 1993 Feb;5(1):63-71. doi: 10.1007/BF03324128. PMID: 8257478. https://pubmed.ncbi.nlm.nih.gov/8257478/
- Mazza A, Cicero AF, Ramazzina E, Lenti S, Schiavon L, Casiglia E, Gussoni G. Nutraceutical approaches to homocysteine lowering in hypertensive subjects at low cardiovascular risk: a multicenter, randomized clinical trial. J Biol Regul Homeost Agents. 2016 Jul-Sep;30(3):921-927. PMID: 27655522. https://pubmed.ncbi.nlm.nih.gov/27655522/
- Ambrosino P, Lupoli R, Di Minno A, Nardo A, Marrone E, Lupoli V, Scaravilli A, Mitidieri E, Tufano A, Di Minno MN. Cyclic supplementation of 5-MTHF is effective for the correction of hyperhomocysteinemia. Nutr Res. 2015 Jun;35(6):489-95. doi: 10.1016/j.nutres.2015.02.006. Epub 2015 Feb 26. PMID: 25841618. https://pubmed.ncbi.nlm.nih.gov/25841618/
- Caruso R, Campolo J, Sedda V, De Chiara B, Dellanoce C, Baudo F, Tonini A, Parolini M, Cighetti G, Parodi O. Effect of homocysteine lowering by 5-methyltetrahydrofolate on redox status in hyperhomocysteinemia. J Cardiovasc Pharmacol. 2006 Apr;47(4):549-55. doi: 10.1097/01.fjc.0000211748.16573.31. PMID: 16680068. https://pubmed.ncbi.nlm.nih.gov/16680068/
- Yamamoto K, Isa Y, Nakagawa T, Hayakawa T. Involvement of 5-methyltetrahydrofolate in the amelioration of hyperhomocysteinemia caused by vitamin B(6) deficiency and L-methionine supplementation. Biosci Biotechnol Biochem. 2013;77(2):378-80. doi: 10.1271/bbb.120661. Epub 2013 Feb 7. PMID: 23391913. https://pubmed.ncbi.nlm.nih.gov/23391913/
- Cianciolo G, La Manna G, Colì L, Donati G, D’Addio F, Persici E, Comai G, Wratten M, Dormi A, Mantovani V, Grossi G, Stefoni S. 5-methyltetrahydrofolate administration is associated with prolonged survival and reduced inflammation in ESRD patients. Am J Nephrol. 2008;28(6):941-8. doi: 10.1159/000142363. Epub 2008 Jun 30. PMID: 18587236; PMCID: PMC2786016. https://pubmed.ncbi.nlm.nih.gov/18587236/
- Huo Y, Li J, Qin X, Huang Y, Wang X, Gottesman RF, Tang G, Wang B, Chen D, He M, Fu J, Cai Y, Shi X, Zhang Y, Cui Y, Sun N, Li X, Cheng X, Wang J, Yang X, Yang T, Xiao C, Zhao G, Dong Q, Zhu D, Wang X, Ge J, Zhao L, Hu D, Liu L, Hou FF; CSPPT Investigators. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial. JAMA. 2015 Apr 7;313(13):1325-35. doi: 10.1001/jama.2015.2274. PMID: 25771069. https://pubmed.ncbi.nlm.nih.gov/25771069/
- Leemans L. Le 5-méthyltétrahydrofolate a-t-il des avantages par rapport a l’acide folique? [Does 5-methyltetrahydrofolate offer any advantage over folic acid?]. J Pharm Belg. 2012 Dec;(4):16-22. French. PMID: 23350208. https://pubmed.ncbi.nlm.nih.gov/23350208/
- Cagnacci A, Cannoletta M, Volpe A. High-dose short-term folate administration modifies ambulatory blood pressure in postmenopausal women. A placebo-controlled study. Eur J Clin Nutr. 2009 Oct;63(10):1266-8. doi: 10.1038/ejcn.2009.58. Epub 2009 Jul 15. PMID: 19603054. https://pubmed.ncbi.nlm.nih.gov/19603054/
- Huo Y, Li J, Qin X, Huang Y, Wang X, Gottesman RF, Tang G, Wang B, Chen D, He M, Fu J, Cai Y, Shi X, Zhang Y, Cui Y, Sun N, Li X, Cheng X, Wang J, Yang X, Yang T, Xiao C, Zhao G, Dong Q, Zhu D, Wang X, Ge J, Zhao L, Hu D, Liu L, Hou FF; CSPPT Investigators. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial. JAMA. 2015 Apr 7;313(13):1325-35. doi: 10.1001/jama.2015.2274. PMID: 25771069. https://pubmed.ncbi.nlm.nih.gov/25771069/
- Willems FF, Boers GH, Blom HJ, Aengevaeren WR, Verheugt FW. Pharmacokinetic study on the utilisation of 5-methyltetrahydrofolate and folic acid in patients with coronary artery disease. Br J Pharmacol. 2004 Mar;141(5):825-30. doi: 10.1038/sj.bjp.0705446. Epub 2004 Feb 9. https://bpspubs.onlinelibrary.wiley.com/doi/10.1038/sj.bjp.0705446
- Venn BJ, Green TJ, Moser R, Mann JI. Comparison of the effect of low-dose supplementation with L-5-methyltetrahydrofolate or folic acid on plasma homocysteine: a randomized placebo-controlled study. Am J Clin Nutr. 2003 Mar;77(3):658-62. doi: 10.1093/ajcn/77.3.658. PMID: 12600857. https://pubmed.ncbi.nlm.nih.gov/12600857/
- Verhaar MC, Wever RM, Kastelein JJ, van Dam T, Koomans HA, Rabelink TJ. 5-methyltetrahydrofolate, the active form of folic acid, restores endothelial function in familial hypercholesterolemia. Circulation. 1998 Jan 27;97(3):237-41. doi: 10.1161/01.cir.97.3.237. https://www.ahajournals.org/doi/10.1161/01.cir.97.3.237?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
- Fernández-Peralta AM, González-Aguilera JJ. MTHFR polymorphisms in primary varicose vein disorder. EBioMedicine. 2015 Jan 29;2(2):104. doi: 10.1016/j.ebiom.2015.01.017. PMID: 26137549; PMCID: PMC4485480. https://pubmed.ncbi.nlm.nih.gov/26137549/
- Buccianti G, Raselli S, Baragetti I, Bamonti F, Corghi E, Novembrino C, Patrosso C, Maggi FM, Catapano AL. 5-methyltetrahydrofolate restores endothelial function in uraemic patients on convective haemodialysis. Nephrol Dial Transplant. 2002 May;17(5):857-64. doi: 10.1093/ndt/17.5.857. PMID: 11981074. https://pubmed.ncbi.nlm.nih.gov/11981074/
- Akoglu B, Schrott M, Bolouri H, Jaffari A, Kutschera E, Caspary WF, Faust D. The folic acid metabolite L-5-methyltetrahydrofolate effectively reduces total serum homocysteine level in orthotopic liver transplant recipients: a double-blind placebo-controlled study. Eur J Clin Nutr. 2008 Jun;62(6):796-801. doi: 10.1038/sj.ejcn.1602778. Epub 2007 May 23. PMID: 17522618. https://pubmed.ncbi.nlm.nih.gov/17522618/
- Mitchell ES, Conus N, Kaput J. B vitamin polymorphisms and behavior: evidence of associations with neurodevelopment, depression, schizophrenia, bipolar disorder and cognitive decline. Neurosci Biobehav Rev. 2014 Nov;47:307-20. doi: 10.1016/j.neubiorev.2014.08.006. Epub 2014 Aug 27. PMID: 25173634. https://pubmed.ncbi.nlm.nih.gov/25173634/
- Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA. 1993 Dec 8;270(22):2693-8. doi: 10.1001/jama.1993.03510220049033. PMID: 8133587. https://pubmed.ncbi.nlm.nih.gov/8133587/
- Selhub J, Bagley LC, Miller J, Rosenberg IH. B vitamins, homocysteine, and neurocognitive function in the elderly. Am J Clin Nutr. 2000 Feb;71(2):614S-620S. doi: 10.1093/ajcn/71.2.614s. PMID: 10681269. https://pubmed.ncbi.nlm.nih.gov/10681269/
- Rampersaud GC, Kauwell GP, Bailey LB. Folate: a key to optimizing health and reducing disease risk in the elderly. J Am Coll Nutr. 2003 Feb;22(1):1-8. doi: 10.1080/07315724.2003.10719270. PMID: 12569109. https://pubmed.ncbi.nlm.nih.gov/12569109/
- Bottiglieri T, Reynolds EH, Laundy M. Folate in CSF and age. J Neurol Neurosurg Psychiatry. 2000 Oct;69(4):562. doi: 10.1136/jnnp.69.4.562a. PMID: 11183038; PMCID: PMC1737145. https://pubmed.ncbi.nlm.nih.gov/11183038/
- Araújo JR, Martel F, Borges N, Araújo JM, Keating E. Folates and aging: Role in mild cognitive impairment, dementia and depression. Ageing Res Rev. 2015 Jul;22:9-19. doi: 10.1016/j.arr.2015.04.005. Epub 2015 May 2. PMID: 25939915. https://pubmed.ncbi.nlm.nih.gov/25939915/
- Mazza A, Cicero AF, Ramazzina E, Lenti S, Schiavon L, Casiglia E, Gussoni G. Nutraceutical approaches to homocysteine lowering in hypertensive subjects at low cardiovascular risk: a multicenter, randomized clinical trial. J Biol Regul Homeost Agents. 2016 Jul-Sep;30(3):921-927. PMID: 27655522. https://pubmed.ncbi.nlm.nih.gov/27655522/
- Peng HY, Man CF, Xu J, Fan Y. Elevated homocysteine levels and risk of cardiovascular and all-cause mortality: a meta-analysis of prospective studies. J Zhejiang Univ Sci B. 2015 Jan;16(1):78-86. doi: 10.1631/jzus.B1400183. PMID: 25559959; PMCID: PMC4288948. https://pubmed.ncbi.nlm.nih.gov/25559959/
- Miller AL. The methionine-homocysteine cycle and its effects on cognitive diseases. Altern Med Rev. 2003 Feb;8(1):7-19. PMID: 12611557. https://pubmed.ncbi.nlm.nih.gov/12611557/
- Refsum H, Ueland PM, Nygård O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med. 1998;49:31-62. doi: 10.1146/annurev.med.49.1.31. PMID: 9509248. https://pubmed.ncbi.nlm.nih.gov/9509248/
- Caruso R, Campolo J, Sedda V, De Chiara B, Dellanoce C, Baudo F, Tonini A, Parolini M, Cighetti G, Parodi O. Effect of homocysteine lowering by 5-methyltetrahydrofolate on redox status in hyperhomocysteinemia. J Cardiovasc Pharmacol. 2006 Apr;47(4):549-55. doi: 10.1097/01.fjc.0000211748.16573.31. PMID: 16680068. https://pubmed.ncbi.nlm.nih.gov/9509248/
- Koury MJ, Ponka P. New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr. 2004;24:105-31. doi: 10.1146/annurev.nutr.24.012003.132306. PMID: 15189115. https://pubmed.ncbi.nlm.nih.gov/15189115/
- Bentley S, Hermes A, Phillips D, Daoud YA, Hanna S. Comparative effectiveness of a prenatal medical food to prenatal vitamins on hemoglobin levels and adverse outcomes: a retrospective analysis. Clin Ther. 2011 Feb;33(2):204-10. doi: 10.1016/j.clinthera.2011.02.010. Epub 2011 Mar 25. PMID: 21440300. https://pubmed.ncbi.nlm.nih.gov/21440300/
- Greenberg, J. A., Bell, S. J., & Guan, Y. (2011). Folic Acid Supplementation and Pregnancy: More Than Just Neural Tube Defect Prevention. Reviews in Obstetrics and Gynecology, 4(2), 52-59. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218540/
- Cario H, Smith DE, Blom H, Blau N, Bode H, Holzmann K, Pannicke U, Hopfner KP, Rump EM, Ayric Z, Kohne E, Debatin KM, Smulders Y, Schwarz K. Dihydrofolate reductase deficiency due to a homozygous DHFR mutation causes megaloblastic anemia and cerebral folate deficiency leading to severe neurologic disease. Am J Hum Genet. 2011 Feb 11;88(2):226-31. doi: 10.1016/j.ajhg.2011.01.007. PMID: 21310277; PMCID: PMC3035706. https://pubmed.ncbi.nlm.nih.gov/21310277/
- Bach V, Schruckmayer G, Sam I, Kemmler G, Stauder R. Prevalence and possible causes of anemia in the elderly: a cross-sectional analysis of a large European university hospital cohort. Clin Interv Aging. 2014 Jul 22;9:1187-96. doi: 10.2147/CIA.S61125. PMID: 25092968; PMCID: PMC4113572. https://pubmed.ncbi.nlm.nih.gov/25092968/
- den Elzen WP, Westendorp RG, Frölich M, de Ruijter W, Assendelft WJ, Gussekloo J. Vitamin B12 and folate and the risk of anemia in old age: the Leiden 85-Plus Study. Arch Intern Med. 2008 Nov 10;168(20):2238-44. doi: 10.1001/archinte.168.20.2238. PMID: 19001201. https://pubmed.ncbi.nlm.nih.gov/19001201/
- Bailey, L. B., Stover, P. J., McNulty, H., Fenech, M. F., Mills, J. L., Pfeiffer, C. M., Fazili, Z., Zhang, M., Ueland, P. M., Molloy, A. M., Caudill, M. A., Shane, B., Berry, R. J., Bailey, R. L., Hausman, D. B., Raghavan, R., & Raiten, D. J. (2015). Biomarkers of Nutrition for Development—Folate Review. The Journal of Nutrition, 145(7), 1636S. https://doi.org/10.3945/jn.114.206599
- Obeid R, Holzgreve W, Pietrzik K. Is 5-methyltetrahydrofolate an alternative to folic acid for the prevention of neural tube defects? J Perinat Med. 2013 Sep 1;41(5):469-83. doi: 10.1515/jpm-2012-0256. PMID: 23482308. https://pubmed.ncbi.nlm.nih.gov/23482308/
- Kim YN, Hwang JH, Cho YO. The effects of exercise training and acute exercise duration on plasma folate and vitamin B12. Nutr Res Pract. 2016 Apr;10(2):161-6. doi: 10.4162/nrp.2016.10.2.161. Epub 2016 Feb 26. PMID: 27087899; PMCID: PMC4819126. https://pubmed.ncbi.nlm.nih.gov/27087899/
- Baranauskas M, Stukas R, Tubelis L, Žagminas K, Šurkienė G, Švedas E, Giedraitis VR, Dobrovolskij V, Abaravičius JA. Nutritional habits among high-performance endurance athletes. Medicina (Kaunas). 2015;51(6):351-62. doi: 10.1016/j.medici.2015.11.004. Epub 2015 Nov 18. PMID: 26739677. https://pubmed.ncbi.nlm.nih.gov/26739677/
- Guest, N. S., Horne, J., Vanderhout, S. M., & El-Sohemy, A. (2019). Sport Nutrigenomics: Personalized Nutrition for Athletic Performance. Frontiers in Nutrition, 6. https://doi.org/10.3389/fnut.2019.00008
- Dinç N, Yücel SB, Taneli F, Sayın MV. The effect of the MTHFR C677T mutation on athletic performance and the homocysteine level of soccer players and sedentary individuals. J Hum Kinet. 2016 Jul 2;51:61-69. doi: 10.1515/hukin-2015-0171. PMID: 28149369; PMCID: PMC5260551. https://pubmed.ncbi.nlm.nih.gov/28149369/
- Joubert LM, Manore MM. Exercise, nutrition, and homocysteine. Int J Sport Nutr Exerc Metab. 2006 Aug;16(4):341-61. doi: 10.1123/ijsnem.16.4.341. PMID: 17136938. https://pubmed.ncbi.nlm.nih.gov/17136938/
- Van Guldener C, Stam F, Stehouwer CD. Homocysteine metabolism in renal failure. Kidney Int Suppl. 2001 Feb;78:S234-7. doi: 10.1046/j.1523-1755.2001.59780234.x. PMID: 11169017. https://pubmed.ncbi.nlm.nih.gov/11169017/
- Xie, D., Yuan, Y., Guo, J., Yang, S., Xu, X., Wang, Q., Li, Y., Qin, X., Tang, G., Huo, Y., Deng, G., Wu, S., Wang, B., Zhang, Q., Wang, X., Fang, P., Wang, H., Xu, X., & Hou, F. (2015). Hyperhomocysteinemia predicts renal function decline: A prospective study in hypertensive adults. Scientific Reports, 5. https://doi.org/10.1038/srep16268
- Vacek, T. P., Kalani, A., Voor, M. J., Tyagi, S. C., & Tyagi, N. (2013). The role of homocysteine in bone remodeling. Clinical Chemistry and Laboratory Medicine : CCLM / FESCC, 51(3), 579. https://doi.org/10.1515/cclm-2012-0605
- Therapy, 5(2), 215-222. 2008. Association of hyperhomocysteinemia with osteoporosis: a systematic review.https://www.openaccessjournals.com/articles/association-of-hyperhomocysteinemia-with-osteoporosis-a-systematic-review.pdf
- Behera J, Bala J, Nuru M, Tyagi SC, Tyagi N. Homocysteine as a Pathological Biomarker for Bone Disease. J Cell Physiol. 2017 Oct;232(10):2704-2709. doi: 10.1002/jcp.25693. Epub 2017 Apr 12. PMID: 27859269; PMCID: PMC5576446. https://pubmed.ncbi.nlm.nih.gov/27859269/
- Li D, Wu J. Association of the MTHFR C677T polymorphism and bone mineral density in postmenopausal women: a meta-analysis. J Biomed Res. 2010 Nov;24(6):417-23. doi: 10.1016/S1674-8301(10)60056-5. PMID: 23554658; PMCID: PMC3596689. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3596689/
- Park, C., & Chang, H. (2014). Clinical Implications of Methylenetetrahydrofolate Reductase Mutations and Plasma Homocysteine Levels in Patients with Thromboembolic Occlusion. Vascular Specialist International, 30(4), 113-119. https://doi.org/10.5758/vsi.2014.30.4.113
- Kaiser Jamil* Clinical Implications of MTHFR Gene Polymorphism in Various Diseases Jamil, Biol Med J 2014, S3 DOI: 10.4172/0974-8369.S3-e101 https://www.academia.edu/33981897/Biology_and_Medicine_Editors_in_Chief_Executive_Editors
- Wilcken B, Bamforth F, Li Z, Zhu H, Ritvanen A, Renlund M, Stoll C, Alembik Y, Dott B, Czeizel AE, Gelman-Kohan Z, Scarano G, Bianca S, Ettore G, Tenconi R, Bellato S, Scala I, Mutchinick OM, López MA, de Walle H, Hofstra R, Joutchenko L, Kavteladze L, Bermejo E, Martínez-Frías ML, Gallagher M, Erickson JD, Vollset SE, Mastroiacovo P, Andria G, Botto LD. Geographical and ethnic variation of the 677C>T allele of 5,10 methylenetetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas world wide. J Med Genet. 2003 Aug;40(8):619-25. doi: 10.1136/jmg.40.8.619. Erratum in: J Med Genet. 2004 May;41(5):400. Redlund, M [corrected to Renlund, M]. PMID: 12920077; PMCID: PMC1735571. https://pubmed.ncbi.nlm.nih.gov/12920077/
- Seremak-Mrozikiewicz A, Drews K, Kurzawinska G, Bogacz A, Grzeskowiak E, Mrozikiewicz PM. The significance of 1793G>A polymorphism in MTHFR gene in women with first trimester recurrent miscarriages. Neuro Endocrinol Lett. 2010;31(5):717-23. PMID: 21173738. https://pubmed.ncbi.nlm.nih.gov/21173738/
- Liew SC, Gupta ED. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet. 2015 Jan;58(1):1-10. doi: 10.1016/j.ejmg.2014.10.004. Epub 2014 Nov 4. PMID: 25449138. https://pubmed.ncbi.nlm.nih.gov/25449138/
- Tsang BL, Devine OJ, Cordero AM, Marchetta CM, Mulinare J, Mersereau P, Guo J, Qi YP, Berry RJ, Rosenthal J, Crider KS, Hamner HC. Assessing the association between the methylenetetrahydrofolate reductase (MTHFR) 677C>T polymorphism and blood folate concentrations: a systematic review and meta-analysis of trials and observational studies. Am J Clin Nutr. 2015 Jun;101(6):1286-94. doi: 10.3945/ajcn.114.099994. Epub 2015 Mar 18. PMID: 25788000. https://pubmed.ncbi.nlm.nih.gov/25788000/
- Jadavji NM, Deng L, Malysheva O, Caudill MA, Rozen R. MTHFR deficiency or reduced intake of folate or choline in pregnant mice results in impaired short-term memory and increased apoptosis in the hippocampus of wild-type offspring. Neuroscience. 2015 Aug 6;300:1-9. doi: 10.1016/j.neuroscience.2015.04.067. Epub 2015 May 6. PMID: 25956258. https://pubmed.ncbi.nlm.nih.gov/25956258/
- Gong, M., Dong, W., He, T., Shi, Z., Huang, G., Ren, R., Huang, S., Qiu, S., & Yuan, R. (2015). MTHFR 677C>T Polymorphism Increases the Male Infertility Risk: A Meta-Analysis Involving 26 Studies. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0121147
- Fernández-Peralta, A. M., & González-Aguilera, J. J. (2015). MTHFR polymorphisms in primary varicose vein disorder. EBioMedicine, 2(2), 104. https://doi.org/10.1016/j.ebiom.2015.01.017
- Nagwa Abdel Meguid, Evaluation of MTHFR Genetic Polymorphism as a Risk Factor in Egyptian Autistic Children and Mothers, January 2015 African Journal of Psychiatry 18(1) DOI:10.4172/Psychiatry.1000179
- Christensen KE, Mikael LG, Leung KY, Lévesque N, Deng L, Wu Q, Malysheva OV, Best A, Caudill MA, Greene ND, Rozen R. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice. Am J Clin Nutr. 2015 Mar;101(3):646-58. doi: 10.3945/ajcn.114.086603. Epub 2015 Jan 7. PMID: 25733650; PMCID: PMC4340065. https://pubmed.ncbi.nlm.nih.gov/25733650/
- van der Put NM, Gabreëls F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, van den Heuvel LP, Blom HJ. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet. 1998 May;62(5):1044-51. doi: 10.1086/301825. PMID: 9545395; PMCID: PMC1377082. https://pubmed.ncbi.nlm.nih.gov/9545395/
- Pietrzik K, Bailey L, Shane B. Folic acid and L-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2010 Aug;49(8):535-48. doi: 10.2165/11532990-000000000-00000. PMID: 20608755. https://pubmed.ncbi.nlm.nih.gov/20608755/
- Patanwala I, King MJ, Barrett DA, Rose J, Jackson R, Hudson M, Philo M, Dainty JR, Wright AJ, Finglas PM, Jones DE. Folic acid handling by the human gut: implications for food fortification and supplementation. Am J Clin Nutr. 2014 Aug;100(2):593-9. doi: 10.3945/ajcn.113.080507. Epub 2014 Jun 18. PMID: 24944062; PMCID: PMC4095662. https://pubmed.ncbi.nlm.nih.gov/24944062/
- Obeid R, Holzgreve W, Pietrzik K. Is 5-methyltetrahydrofolate an alternative to folic acid for the prevention of neural tube defects? J Perinat Med. 2013 Sep 1;41(5):469-83. doi: 10.1515/jpm-2012-0256. PMID: 23482308. Https://pubmed.ncbi.nlm.nih.gov/23482308/
- Bailey SW, Ayling JE. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15424-9. doi: 10.1073/pnas.0902072106. Epub 2009 Aug 24. PMID: 19706381; PMCID: PMC2730961. https://pubmed.ncbi.nlm.nih.gov/19706381/
- Patanwala I, King MJ, Barrett DA, Rose J, Jackson R, Hudson M, Philo M, Dainty JR, Wright AJ, Finglas PM, Jones DE. Folic acid handling by the human gut: implications for food fortification and supplementation. Am J Clin Nutr. 2014 Aug;100(2):593-9. doi: 10.3945/ajcn.113.080507. Epub 2014 Jun 18. PMID: 24944062; PMCID: PMC4095662. https://pubmed.ncbi.nlm.nih.gov/24944062/
- Pietrzik K, Bailey L, Shane B. Folic acid and L-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2010 Aug;49(8):535-48. doi: 10.2165/11532990-000000000-00000. PMID: 20608755. https://pubmed.ncbi.nlm.nih.gov/20608755/
- Pentieva K, McNulty H, Reichert R, Ward M, Strain JJ, McKillop DJ, McPartlin JM, Connolly E, Molloy A, Krämer K, Scott JM. The short-term bioavailabilities of [6S]-5-methyltetrahydrofolate and folic acid are equivalent in men. J Nutr. 2004 Mar;134(3):580-5. doi: 10.1093/jn/134.3.580. PMID: 14988450. https://pubmed.ncbi.nlm.nih.gov/14988450/
- Houghton LA, Sherwood KL, Pawlosky R, Ito S, O’Connor DL. [6S]-5-Methyltetrahydrofolate is at least as effective as folic acid in preventing a decline in blood folate concentrations during lactation. Am J Clin Nutr. 2006 Apr;83(4):842-50. doi: 10.1093/ajcn/83.4.842. PMID: 16600937. https://pubmed.ncbi.nlm.nih.gov/16600937/
- Litynski P, Loehrer F, Linder L, Todesco L, Fowler B. Effect of low doses of 5-methyltetrahydrofolate and folic acid on plasma homocysteine in healthy subjects with or without the 677C–>T polymorphism of methylenetetrahydrofolate reductase. Eur J Clin Invest. 2002 Sep;32(9):662-8. doi: 10.1046/j.1365-2362.2002.01055.x. PMID: 12486865. https://pubmed.ncbi.nlm.nih.gov/12486865/
- Fanelli S, Francioso A, Cavallaro RA, d’Erme M, Mosca L, et al. (2018) Oral Administration of S-acetyl-glutathione: Impact on the Levels of Glutathione in Plasma and in Erythrocytes of Healthy Volunteers. Int J Clin Nutr Diet 4: 134. doi: https://doi.org/10.15344/2456-8171/2018/134
- Knapen MH, Braam LA, Drummen NE, Bekers O, Hoeks AP, Vermeer C. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial. Thromb Haemost. 2015 May;113(5):1135-44. doi: 10.1160/TH14-08-0675. Epub 2015 Feb 19. PMID: 25694037. https://pubmed.ncbi.nlm.nih.gov/25694037/
- Knapen MH, Braam LA, Teunissen KJ, Zwijsen RM, Theuwissen E, Vermeer C. Yogurt drink fortified with menaquinone-7 improves vitamin K status in a healthy population. J Nutr Sci. 2015 Oct 16;4:e35. doi: 10.1017/jns.2015.25. PMID: 26495126; PMCID: PMC4611080. https://pubmed.ncbi.nlm.nih.gov/26495126/
- Knapen MH, Braam LA, Teunissen KJ, Van’t Hoofd CM, Zwijsen RM, van den Heuvel EG, Vermeer C. Steady-state vitamin K2 (menaquinone-7) plasma concentrations after intake of dairy products and soft gel capsules. Eur J Clin Nutr. 2016 Jul;70(7):831-6. doi: 10.1038/ejcn.2016.3. Epub 2016 Feb 24. PMID: 26908424. https://pubmed.ncbi.nlm.nih.gov/26908424/
- Maresz, K. (2021). Growing Evidence of a Proven Mechanism Shows Vitamin K2 Can Impact Health Conditions Beyond Bone and Cardiovascular. Integrative Medicine: A Clinician’s Journal, 20(4), 34-38. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8483258/
- Schurgers, L., Knapen, M., & Vermeer, C. (2007). Vitamin K2 improves bone strength in postmenopausal women. International Congress Series, 1297, 179-187. https://doi.org/10.1016/j.ics.2006.08.006
- Mansour AG, Hariri E, Daaboul Y, Korjian S, El Alam A, Protogerou AD, Kilany H, Karam A, Stephan A, Bahous SA. Vitamin K2 supplementation and arterial stiffness among renal transplant recipients-a single-arm, single-center clinical trial. J Am Soc Hypertens. 2017 Sep;11(9):589-597. doi: 10.1016/j.jash.2017.07.001. Epub 2017 Jul 13. PMID: 28756183. https://pubmed.ncbi.nlm.nih.gov/28756183/
- Theuwissen E, Magdeleyns EJ, Braam LA, Teunissen KJ, Knapen MH, Binnekamp IA, van Summeren MJ, Vermeer C. Vitamin K status in healthy volunteers. Food Funct. 2014 Feb;5(2):229-34. doi: 10.1039/c3fo60464k. PMID: 24296867. https://pubmed.ncbi.nlm.nih.gov/24296867/
- Aoun M, Makki M, Azar H, Matta H, Chelala DN. High Dephosphorylated-Uncarboxylated MGP in Hemodialysis patients: risk factors and response to vitamin K2, A pre-post intervention clinical trial. BMC Nephrol. 2017 Jun 7;18(1):191. doi: 10.1186/s12882-017-0609-3. PMID: 28592319; PMCID: PMC5463325. https://pubmed.ncbi.nlm.nih.gov/28592319/
- Caluwé R, Vandecasteele S, Van Vlem B, Vermeer C, De Vriese AS. Vitamin K2 supplementation in haemodialysis patients: a randomized dose-finding study. Nephrol Dial Transplant. 2014 Jul;29(7):1385-90. doi: 10.1093/ndt/gft464. Epub 2013 Nov 26. PMID: 24285428. https://pubmed.ncbi.nlm.nih.gov/24285428/
- Ozdemir MA, Yilmaz K, Abdulrezzak U, Muhtaroglu S, Patiroglu T, Karakukcu M, Unal E. The efficacy of vitamin K2 and calcitriol combination on thalassemic osteopathy. J Pediatr Hematol Oncol. 2013 Nov;35(8):623-7. doi: 10.1097/MPH.0000000000000040. PMID: 24136015. https://pubmed.ncbi.nlm.nih.gov/24136015/
- Theuwissen E, Cranenburg EC, Knapen MH, Magdeleyns EJ, Teunissen KJ, Schurgers LJ, Smit E, Vermeer C. Low-dose menaquinone-7 supplementation improved extra-hepatic vitamin K status, but had no effect on thrombin generation in healthy subjects. Br J Nutr. 2012 Nov 14;108(9):1652-7. doi: 10.1017/S0007114511007185. Epub 2012 Jan 31. PMID: 22289649. https://pubmed.ncbi.nlm.nih.gov/22289649/
- Westenfeld R, Krueger T, Schlieper G, Cranenburg EC, Magdeleyns EJ, Heidenreich S, Holzmann S, Vermeer C, Jahnen-Dechent W, Ketteler M, Floege J, Schurgers LJ. Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: a randomized trial. Am J Kidney Dis. 2012 Feb;59(2):186-95. doi: 10.1053/j.ajkd.2011.10.041. Epub 2011 Dec 9. PMID: 22169620. https://pubmed.ncbi.nlm.nih.gov/22169620/
- van Summeren MJ, Braam LA, Lilien MR, Schurgers LJ, Kuis W, Vermeer C. The effect of menaquinone-7 (vitamin K2) supplementation on osteocalcin carboxylation in healthy prepubertal children. Br J Nutr. 2009 Oct;102(8):1171-8. doi: 10.1017/S0007114509382100. Epub 2009 May 19. PMID: 19450370. https://pubmed.ncbi.nlm.nih.gov/19450370/
- Schurgers LJ, Vermeer C. Differential lipoprotein transport pathways of K-vitamins in healthy subjects. Biochim Biophys Acta. 2002 Feb 15;1570(1):27-32. doi: 10.1016/s0304-4165(02)00147-2. PMID: 11960685. https://pubmed.ncbi.nlm.nih.gov/11960685/
- Knapen MH, Schurgers LJ, Vermeer C. Vitamin K2 supplementation improves hip bone geometry and bone strength indices in postmenopausal women. Osteoporos Int. 2007 Jul;18(7):963-72. doi: 10.1007/s00198-007-0337-9. Epub 2007 Feb 8. PMID: 17287908; PMCID: PMC1915640. https://pubmed.ncbi.nlm.nih.gov/17287908/
- Kanellakis S, Moschonis G, Tenta R, Schaafsma A, van den Heuvel EG, Papaioannou N, Lyritis G, Manios Y. Changes in parameters of bone metabolism in postmenopausal women following a 12-month intervention period using dairy products enriched with calcium, vitamin D, and phylloquinone (vitamin K(1)) or menaquinone-7 (vitamin K (2)): the Postmenopausal Health Study II. Calcif Tissue Int. 2012 Apr;90(4):251-62. doi: 10.1007/s00223-012-9571-z. Epub 2012 Mar 4. PMID: 22392526. https://pubmed.ncbi.nlm.nih.gov/22392526/
- Shiraki M, Itabashi A. Short-term menatetrenone therapy increases gamma-carboxylation of osteocalcin with a moderate increase of bone turnover in postmenopausal osteoporosis: a randomized prospective study. J Bone Miner Metab. 2009;27(3):333-40. doi: 10.1007/s00774-008-0034-6. Epub 2009 Jan 27. PMID: 19172219. https://pubmed.ncbi.nlm.nih.gov/19172219/
- Dehghan P, Pourghassem Gargari B, Asgharijafarabadi M. Effects of high performance inulin supplementation on glycemic status and lipid profile in women with type 2 diabetes: a randomized, placebo-controlled clinical trial. Health Promot Perspect. 2013 Jun 30;3(1):55-63. doi: 10.5681/hpp.2013.007. PMID: 24688953; PMCID: PMC3963683.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963683/ - Munim, Adil & Rod, Michel & Tavakoli, Hamed & Hosseinian, Farah. (2017). An Analysis of the Composition, Health Benefits, and Future Market Potential of the Jerusalem Artichoke in Canada. Journal of Food Research. 6. 69. 10.5539/jfr.v6n5p69.
https://www.researchgate.net/publication/319214491_An_Analysis_of_the_Composition_Health_Benefits_and_Future_Market_Potential_of_the_Jerusalem_Artichoke_in_Canada - Flax seed: https://ods.od.nih.gov/factsheets/Omega3FattyAcids-Consumer/
- Vitamin C: https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/
- Prakash A, Baskaran R. Acerola, an untapped functional superfruit: a review on latest frontiers. J Food Sci Technol. 2018 Sep;55(9):3373-3384. doi: 10.1007/s13197-018-3309-5. Epub 2018 Jul 11. PMID: 30150795; PMCID: PMC6098779. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6098779/
- Ghasemzadeh Rahbardar M, Hosseinzadeh H. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iran J Basic Med Sci. 2020 Sep;23(9):1100-1112. doi: 10.22038/ijbms.2020.45269.10541. PMID: 32963731; PMCID: PMC7491497.
- Andrade JM, Faustino C, Garcia C, Ladeiras D, Reis CP, Rijo P. Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity. Future Sci OA. 2018 Feb 1;4(4):FSO283. doi: 10.4155/fsoa-2017-0124. PMID: 29682318; PMCID: PMC5905578.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905578/ - Aboulwafa MM, Youssef FS, Gad HA, Altyar AE, Al-Azizi MM, Ashour ML. A Comprehensive Insight on the Health Benefits and Phytoconstituents of Camellia sinensis and Recent Approaches for Its Quality Control. Antioxidants (Basel). 2019 Oct 6;8(10):455. doi: 10.3390/antiox8100455. PMID: 31590466; PMCID: PMC6826564.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826564/ - Chen L, Zhu Y, Hu Z, Wu S, Jin C. Beetroot as a functional food with huge health benefits: Antioxidant, antitumor, physical function, and chronic metabolomics activity. Food Sci Nutr. 2021 Sep 9;9(11):6406-6420. doi: 10.1002/fsn3.2577. PMID: 34760270; PMCID: PMC8565237.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565237/ - Kalt W, Cassidy A, Howard LR, Krikorian R, Stull AJ, Tremblay F, Zamora-Ros R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv Nutr. 2020 Mar 1;11(2):224-236. doi: 10.1093/advances/nmz065. PMID: 31329250; PMCID: PMC7442370.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442370/ - Hyrslova I, Krausova G, Mrvikova I, Stankova B, Branyik T, Malinska H, Huttl M, Kana A, Doskocil I. Functional Properties of Dunaliella salina and Its Positive Effect on Probiotics. Mar Drugs. 2022 Dec 15;20(12):781. doi: 10.3390/md20120781. PMID: 36547928; PMCID: PMC9781844.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781844/ - Laurindo LF, Barbalho SM, Araújo AC, Guiguer EL, Mondal A, Bachtel G, Bishayee A. Açaí (Euterpe oleracea Mart.) in Health and Disease: A Critical Review. Nutrients. 2023 Feb 16;15(4):989. doi: 10.3390/nu15040989. PMID: 36839349; PMCID: PMC9965320.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965320/ - Montaner, C., Mallor, C., Laguna, S., & Zufiaurre, R. (2023). Bioactive compounds, antioxidant activity, and mineral content of bróquil: A traditional crop of Brassica oleracea var. Italica. Frontiers in Nutrition, 9, 1006012.
https://doi.org/10.3389/fnut.2022.1006012https://www.frontiersin.org/articles/10.3389/fnut.2022.1006012/full
- Broccoli: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2345151/nutrients
- Ahmad T, Cawood M, Iqbal Q, Ariño A, Batool A, Tariq RMS, Azam M, Akhtar S. Phytochemicals in Daucus carota and Their Health Benefits-Review Article. Foods. 2019 Sep 19;8(9):424. doi: 10.3390/foods8090424. PMID: 31546950; PMCID: PMC6770766.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770766/ - Sharma KD, Karki S, Thakur NS, Attri S. Chemical composition, functional properties and processing of carrot-a review. J Food Sci Technol. 2012 Feb;49(1):22-32. doi: 10.1007/s13197-011-0310-7. Epub 2011 Mar 18. PMID: 23572822; PMCID: PMC3550877.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3550877/ - Hancock, J., Beaudry, R., & Luby, J. (2003). FRUITS OF TEMPERATE CLIMATES | Fruits of the Ericacae. Encyclopedia of Food Sciences and Nutrition (Second Edition), 2762-2768. https://doi.org/10.1016/B0-12-227055-X/00531-9
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/vaccinium-macrocarpon#:~:text=Cranberry%20(Vaccinium%20macrocarpon)%20juice%20and,et%20al.%2C%201992).
- Nemzer BV, Al-Taher F, Yashin A, Revelsky I, Yashin Y. Cranberry: Chemical Composition, Antioxidant Activity and Impact on Human Health: Overview. Molecules. 2022 Feb 23;27(5):1503. doi: 10.3390/molecules27051503. PMID: 35268605; PMCID: PMC8911768.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911768/ - Ashton MM, Dean OM, Walker AJ, Bortolasci CC, Ng CH, Hopwood M, Harvey BH, Möller M, McGrath JJ, Marx W, Turner A, Dodd S, Scott JG, Khoo JP, Walder K, Sarris J, Berk M. The Therapeutic Potential of Mangosteen Pericarp as an Adjunctive Therapy for Bipolar Disorder and Schizophrenia. Front Psychiatry. 2019 Mar 13;10:115. doi: 10.3389/fpsyt.2019.00115. PMID: 30918489; PMCID: PMC6424889.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424889/#:~:text=Mangosteen%20pericarp%20has%20historically%20been,xanthones%20and%20catechins%20(64). - Pedraza-Chaverri J, Cárdenas-Rodríguez N, Orozco-Ibarra M, Pérez-Rojas JM. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem Toxicol. 2008 Oct;46(10):3227-39. doi: 10.1016/j.fct.2008.07.024. Epub 2008 Aug 6. PMID: 18725264.
https://pubmed.ncbi.nlm.nih.gov/18725264/ - Vara, A. L., Pinela, J., Dias, M. I., Petrović, J., Nogueira, A., Soković, M., R. Ferreira, C. F., & Barros, L. (2020). Compositional Features of the “Kweli” Red Raspberry and Its Antioxidant and Antimicrobial Activities. Foods, 9(11).
https://doi.org/10.3390/foods9111522https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690723/
- Red Raspberries: https://ods.od.nih.gov/factsheets/WeightLoss-HealthProfessional/
- Gutierrez RMP, Velazquez EG, Carrera SPP. Spinacia oleracea Linn Considered as One of the Most Perfect Foods: A Pharmacological and Phytochemical Review. Mini Rev Med Chem. 2019;19(20):1666-1680. doi: 10.2174/1389557519666190603090347. PMID: 31161986.
https://pubmed.ncbi.nlm.nih.gov/31161986/ - Collins EJ, Bowyer C, Tsouza A, Chopra M. Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. Biology (Basel). 2022 Feb 4;11(2):239. doi: 10.3390/biology11020239. PMID: 35205105; PMCID: PMC8869745.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869745/ - Perveen R, Suleria HA, Anjum FM, Butt MS, Pasha I, Ahmad S. Tomato (Solanum lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims–A Comprehensive Review. Crit Rev Food Sci Nutr. 2015;55(7):919-29. doi: 10.1080/10408398.2012.657809. PMID: 24915375.
https://pubmed.ncbi.nlm.nih.gov/24915375/ - Gao Y, Wei Y, Wang Y, Gao F, Chen Z. Lycium Barbarum: A Traditional Chinese Herb and A Promising Anti-Aging Agent. Aging Dis. 2017 Dec 1;8(6):778-791. doi: 10.14336/AD.2017.0725. PMID: 29344416; PMCID: PMC5758351.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5758351/#:~:text=In%20Traditional%20Chinese%20Medicine%2C%20Lycium,a%20potent%20anti%2Daging%20agent. - Ianiro G, Pecere S, Giorgio V, Gasbarrini A, Cammarota G. Digestive Enzyme Supplementation in Gastrointestinal Diseases. Curr Drug Metab. 2016;17(2):187-93. doi: 10.2174/138920021702160114150137. PMID: 26806042; PMCID: PMC4923703.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4923703/ - Roxas M. The role of enzyme supplementation in digestive disorders. Altern Med Rev. 2008 Dec;13(4):307-14. PMID: 19152478.
https://pubmed.ncbi.nlm.nih.gov/19152478/ - Jakubowska-Pietkiewicz E, Młynarski W, Klich I, Fendler W, Chlebna-Sokół D. Vitamin D receptor gene variability as a factor influencing bone mineral density in pediatric patients. Mol Biol Rep. 2012 May;39(5):6243-50. doi: 10.1007/s11033-012-1444-z. Epub 2012 Mar 16. PMID: 22422157. https://pubmed.ncbi.nlm.nih.gov/22422157/
- Salamone LM, Ferrell R, Black DM, Palermo L, Epstein RS, Petro N, Steadman N, Kuller LH, Cauley JA. The association between vitamin D receptor gene polymorphisms and bone mineral density at the spine, hip and whole-body in premenopausal women. Osteoporos Int. 1996;6(1):63-8. doi: 10.1007/BF01626540. Erratum in: Osteoporos Int 1996;6(3):187-8. PMID: 8845602. https://pubmed.ncbi.nlm.nih.gov/8845602/
- Sakamoto Y, Oono F, Iida K, Wang PL, Tachi Y. Relationship between vitamin D receptor gene polymorphisms (BsmI, TaqI, ApaI, and FokI) and calcium intake on bone mass in young Japanese women. BMC Womens Health. 2021 Feb 19;21(1):76. doi: 10.1186/s12905-021-01222-7. PMID: 33607983; PMCID: PMC7893901. https://pubmed.ncbi.nlm.nih.gov/33607983/
- Jiang LL, Zhang C, Zhang Y, Ma F, Guan Y. Associations between polymorphisms in VDR gene and the risk of osteoporosis: a meta-analysis. Arch Physiol Biochem. 2022 Dec;128(6):1637-1644. doi: 10.1080/13813455.2020.1787457. Epub 2020 Aug 6. PMID: 32757960. https://pubmed.ncbi.nlm.nih.gov/32757960/
- Jia F, Sun RF, Li QH, Wang DX, Zhao F, Li JM, Pu Q, Zhang ZZ, Jin Y, Liu BL, Xiong Y. Vitamin D receptor BsmI polymorphism and osteoporosis risk: a meta-analysis from 26 studies. Genet Test Mol Biomarkers. 2013 Jan;17(1):30-4. doi: 10.1089/gtmb.2012.0267. Epub 2012 Nov 7. PMID: 23134477. https://pubmed.ncbi.nlm.nih.gov/23134477/
- Banjabi, A. A., Al-Ghafari, A. B., Kumosani, T. A., Kannan, K., & Fallatah, S. M. (2020). Genetic influence of vitamin D receptor gene polymorphisms on osteoporosis risk. International Journal of Health Sciences, 14(4), 22-28. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346971/
- Anthony W Norman, From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health1, The American Journal of Clinical Nutrition, Volume 88, Issue 2,2008,Pages 491S-499S,ISSN 0002-9165,https://doi.org/10.1093/ajcn/88.2.491S
https://www.sciencedirect.com/science/article/pii/S0002916523241039 - Abdel-Tawab, Mona, Oliver Werz, and Manfred Schubert-Zsilavecz. “Boswellia serrata: an overall assessment of in vitro, preclinical, pharmacokinetic and clinical data.” Clinical pharmacokinetics 50 (2011): 349-369. https://phmd.pl/resources/html/article/details?id=142361&language=en#155489
- Al‐Saidi, Salim, et al. “Composition and Antibacterial Activity of the Essential Oils of Four Commercial Grades of Omani Luban, the Oleo‐Gum Resin of Boswellia sacra Flueck.” Chemistry & Biodiversity 9.3 (2012): 615-624.
https://www.academia.edu/36410150/Composition_and_Antibacterial_Activity_of_the_Essential_Oils_of_Four_Commercial_Grades_of_Omani_Luban_the_Oleo_Gum_Resin_of_Boswellia_sacraFlueck - Hamidpour, R., Hamidpour, S., Hamidpour, M., & Shahlari, M. (2013). Frankincense (乳香 Rǔ Xiāng; Boswellia Species): From the Selection of Traditional Applications to the Novel Phytotherapy for the Prevention and Treatment of Serious Diseases. Journal of Traditional and Complementary Medicine, 3(4), 221-226. https://doi.org/10.4103/2225-4110.119723
- Naguib YM. Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem. 2000 Apr;48(4):1150-4. doi: 10.1021/jf991106k. PMID: 10775364. https://pubmed.ncbi.nlm.nih.gov/10775364/
- Choi HD, Youn YK, Shin WG. Positive effects of astaxanthin on lipid profiles and oxidative stress in overweight subjects. Plant Foods Hum Nutr. 2011 Nov;66(4):363-9. doi: 10.1007/s11130-011-0258-9. PMID: 21964877. https://pubmed.ncbi.nlm.nih.gov/21964877/
- Park JS, Chyun JH, Kim YK, Line LL, Chew BP. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr Metab (Lond). 2010 Mar 5;7:18. doi: 10.1186/1743-7075-7-18. PMID: 20205737; PMCID: PMC2845588. https://pubmed.ncbi.nlm.nih.gov/20205737/
- Tominaga K, Hongo N, Fujishita M, Takahashi Y, Adachi Y. Protective effects of astaxanthin on skin deterioration. J Clin Biochem Nutr. 2017 Jul;61(1):33-39. doi: 10.3164/jcbn.17-35. Epub 2017 Jun 20. PMID: 28751807; PMCID: PMC5525019.
https://pubmed.ncbi.nlm.nih.gov/28751807/ - Tominaga K, Hongo N, Karato M, Yamashita E. Cosmetic benefits of astaxanthin on humans subjects. Ac
ta Biochim Pol. 2012;59(1):43-7. Epub 2012 Mar 17. PMID: 22428137.
https://pubmed.ncbi.nlm.nih.gov/22428137/ - Park JS, Chyun JH, Kim YK, Line LL, Chew BP. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr Metab (Lond). 2010 Mar 5;7:18. doi: 10.1186/1743-7075-7-18. PMID: 20205737; PMCID: PMC2845588.
htts://pubmed.ncbi.nlm.nih.gov/20205737/ - Liu SZ, Ali AS, Campbell MD, Kilroy K, Shankland EG, Roshanravan B, Marcinek DJ, Conley KE. Building strength, endurance, and mobility using an astaxanthin formulation with functional training in elderly. J Cachexia Sarcopenia Muscle. 2018 Oct;9(5):826-833. doi: 10.1002/jcsm.12318. Epub 2018 Sep 26. PMID: 30259703; PMCID: PMC6204600.
Astaxanthin continued - Wanqiang Wu a, Xin Wang a, Qisen Xiang a, Xu Meng a, Ye Peng b, Na Du a, Zhigang Liu a, Quancai Sun a, Chan Wang a and Xuebo Liu *a Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. (Paper) Food Funct., 2014, 5, 158-166 DOI: 10.1039/C3FO60400D https://pubs.rsc.org/lv/content/articlehtml/2014/fo/c3fo60400d
- Jensen GS, Attridge VL, Benson KF, Beaman JL, Carter SG, Ager D. Consumption of dried apple peel powder increases joint function and range of motion. J Med Food. 2014 Nov;17(11):1204-13. doi: 10.1089/jmf.2014.0037. Epub 2014 Oct 1. PMID: 25271471; PMCID: PMC4224039. https://pubmed.ncbi.nlm.nih.gov/25271471/
- Pantea Rahmani Yeganeh, Jade Leahy, Schohraya Spahis, Natalie Patey, Yves Desjardins, Denis Roy, Edgard Delvin, Carole Garofalo, Jean-Philippe Leduc-Gaudet, David St-Pierre, Jean-François Beaulieu, André Marette, Gilles Gouspillou, Emile Levy, Apple peel polyphenols reduce mitochondrial dysfunction in mice with DSS-induced ulcerative colitis, The Journal of Nutritional Biochemistry, Volume 57, 2018, Pages 56-66, ISSN 0955-2863, https://doi.org/10.1016/j.jnutbio.2018.03.008
(https://www.sciencedirect.com/science/article/pii/S0955286317305922) - Guerrero L, Castillo J, Quiñones M, Garcia-Vallvé S, Arola L, Pujadas G, Muguerza B. Inhibition of angiotensin-converting enzyme activity by flavonoids: structure-activity relationship studies. PLoS One. 2012;7(11):e49493. doi: 10.1371/journal.pone.0049493. Epub 2012 Nov 21. PMID: 23185345; PMCID: PMC3504033. https://pubmed.ncbi.nlm.nih.gov/23185345/
- Sadowska-Krępa E, Kłapcińska B, Podgórski T, Szade B, Tyl K, Hadzik A. Effects of supplementation with acai (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study. Biol Sport. 2015 Jun;32(2):161-8. doi: 10.5604/20831862.1144419. Epub 2015 Mar 15. PMID: 26060341; PMCID: PMC4447763. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447763/
- Alfawaz, H. A., Wani, K., Alrakayan, H., Alnaami, A. M., & Al-Daghri, N. M. (2022). Awareness, Knowledge and Attitude towards ‘Superfood’ Kale and Its Health Benefits among Arab Adults. Nutrients, 14(2). https://doi.org/10.3390/nu14020245
- Ortega-Hernández, E., Antunes-Ricardo, M., & Jacobo-Velázquez, D. A. (2021). Improving the Health-Benefits of Kales (Brassica oleracea L. Var. Acephala DC) through the Application of Controlled Abiotic Stresses: A Review. Plants, 10(12). https://doi.org/10.3390/plants10122629
-
Yaqian Cheng, Siqi Wan, Linna Yao, Ding Lin, Tong Wu, Yongjian Chen, Ailian Zhang, Chenfei Lu,
Bamboo leaf: A review of traditional medicinal property, phytochemistry, pharmacology, and purification technology, Journal of Ethnopharmacology,Volume 306,2023,116166,ISSN 0378-8741,https://doi.org/10.1016/j.jep.2023.116166
(https://www.sciencedirect.com/science/article/pii/S037887412300034X) - Alleva R, Tomasetti M, Bompadre S, Littarru GP. Oxidation of LDL and their subfractions: kinetic aspects and CoQ10 content. Mol Aspects Med. 1997;18 Suppl:S105-12. https://pubmed.ncbi.nlm.nih.gov/9266511/
- De Pinieux G, Chariot P, Ammi-Saïd M, et al. Lipid-lowering drugs and mitochondrial function: effects of HMG-CoA reductase inhibitors on serum ubiquinone and blood lactate/pyruvate ratio. Br J Clin Pharmacol. 1996;42(3):333-337. https://pubmed.ncbi.nlm.nih.gov/8877024/
- Dhingra R, Gona P, Wang T, et al. Serum g-glutamyl transferase and risk of heart failure in the community. Arterioscler Thromb Vasc Biol. 2010;30(9):1855-1860. https://pubmed.ncbi.nlm.nih.gov/20539015/
- Ernster L, Forsmark-Andrée P. Ubiquinol: an endogenous antioxidant in aerobic organisms. Clin Investig. 1993;71(8 Suppl):S60-5. https://pubmed.ncbi.nlm.nih.gov/8241707/
- Evans M, Baisley J, Barss S, Guthrie N. A randomized, double-blind trial on the bioavailability of two CoQ10 formulations. J Funct Foods. 2009;1:65-73. https://www.sciencedirect.com/science/article/pii/S175646460800011X
- Fedacko J, Pella D, Fedackova P, Hänninen O, Tuomainen P, Jarcuska P, Lopuchovsky T, Jedlickova L, Merkovska L, Littarru GP. Coenzyme Q(10) and selenium in statin-associated myopathy treatment. Can J Physiol Pharmacol. 2013 Feb;91(2):165-70. https://pubmed.ncbi.nlm.nih.gov/23458201/
- Fischer A, Onur S, Niklowitz P, et al. Coenzyme Q10 redox state predicts the concentration of c-reactive protein in a large caucasian cohort. BioFactors. 2016;42(3):268-276. https://pubmed.ncbi.nlm.nih.gov/26910885/
- Forsmark-Andrée P, Ernster L. Evidence for a protective effect of endogenous ubiquinol against oxidative damage to mitochondrial protein and DNA during lipid peroxidation. Mol Aspects Med. 1994;15(suppl 1):S73-S81. https://pubmed.ncbi.nlm.nih.gov/7752847/
- Frei B, Kim MC, Ames BN. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4879-83. https://pubmed.ncbi.nlm.nih.gov/2352956/
- Hosoe K, Kitano M, Kishida H, Kubo H, Fujii K, Kitahara M. Study on safety and bioavailability of ubiquinol (Kaneka QH) after single and 4-week multiple oral administration to healthy volunteers. Regul Toxicol Pharmacol. 2007 Feb;47(1):19-28. https://pubmed.ncbi.nlm.nih.gov/16919858/
- Kalen A, Appelkvist E-L, Daliner G. Age-related changes in the lipid compositions of rat and human tissues. Lipids. 1989;24(7):579-584. https://pubmed.ncbi.nlm.nih.gov/2779364/
- Kawashima C et al. Ubiquinol improves endothelial function in patients with heart failure with reduced ejection fraction: A single center, randomized double-blind placebo-controlled cross-over study. Circulation. 2016;134 Suppl 1 Abstract 14946. https://pubmed.ncbi.nlm.nih.gov/31713723/
- Kubo H, Fujii K, Kawabe T, et al. Food content of ubiuqinol-10 and ubiquinone-10 in the Japanese diet. J Food Comp Anal. 2008;21(3):199-210. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4025630/
- Langsjoen PH, Langsjoen AM. Comparison study of plasma coenzyme Q10 levels in healthy subjects supplemented with ubiquinol versus ubiquinone. Clin Pharmacol Drug Dev. 2013;3(1):13-17. https://pubmed.ncbi.nlm.nih.gov/27128225/
- Langsjoen PH, Langsjoen AM. Supplemental ubiquinol in patients with advanced congestive heart failure. BioFactors. 2008;32(1-4):119-128. https://pubmed.ncbi.nlm.nih.gov/19096107/
- Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118-126. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249911/
- Miles MV, Horn P, Miles L et al. Bioequivalence of coenzyme Q10 from over-the-counter supplements. Nutr Res. 2002;22(8):919-929. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278738/
- Mohr D, Bowry VW, Stocker R. Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochim Biophys Acta. 1992 Jun 26;1126(3):247-54. https://pubmed.ncbi.nlm.nih.gov/1637852/
- Mortensen SA, Leth A, Agner E, Rohde M. Dose-related decrease of serum coenzyme Q10 during treatment with HMG-CoA reductase inhibitors. Mol Aspects Med Suppl. 1997;18:S137-S144. https://pubmed.ncbi.nlm.nih.gov/9266515/
- Niklowitz P, Onur S, Fisher A, et al. Coenzyme Q10 serum concentration and redox status in European adults: influence of age, sex, and lipoprotein concentration. J Clin Biochem Nutr. 2016;58(3):240-245. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745647/
- Onur S, Niklowitz P, Jacobs G, Lieb W, Menke T, Döring F. Association between serum level of ubiquinol and NT-proBNP, a marker for chronic heart failure, in healthy elderly subjects. Biofactors. 2015 Jan-Feb;41(1):35-43. https://pubmed.ncbi.nlm.nih.gov/25728634/
- Onur S, Niklowitz P, Jacobs G, Nöthlings U, Lieb W, Menke T, Döring F. Ubiquinol reduces gamma glutamyltransferase as a marker of oxidative stress in humans. BMC Res Notes. 2014 Jul 4;7:427. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105833/
- Passi S, Stancato A, Aleo E, et al. Statins lower plasma and lymphocyte ubiquinol/ubiquinone without affecting other antioxidants and PUFA. BioFactors. 2003;18(1-4):113-124. https://pubmed.ncbi.nlm.nih.gov/14695926/
- Schmelzer C, Niklowitz P, Okun JG, et al. Ubiquinol-induced gene expression signatures are translated into altered parameters of erythropoiesis and reduced low density lipoprotein cholesterol levels in humans. IUBMB Life. 2011;63(1):42-48. https://pubmed.ncbi.nlm.nih.gov/21280176/
- Stocker R, Bowry VW, Frei B. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1646-50. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC51081/
-
Tang PH, Miles MV, DeGrauw A, et al. HPLC analysis of reduced and oxidized coenzyme Q10 in human plasma. Clin Chem. 2001;47(2):256-265. https://pubmed.ncbi.nlm.nih.gov/11159774/
Tomasetti M, Alleva R, Borghi B, Collins AR. In vivo supplementation with coenzyme Q10 enhances the recovery of human lymphocytes from oxidative DNA damage. FASEB J. 2001 Jun;15(8):1425-7. https://pubmed.ncbi.nlm.nih.gov/11387245/ - Wada H, Goto H, Hagiwara S-I, Yamamoto Y. Redox status of coenzyme Q10 is associated with chronological age. JAGS. 2007;55(7):1141-1142. https://pubmed.ncbi.nlm.nih.gov/17608895/
- Watts GF, Castelluccio C, Rice-Evans C, et al. Plasma coenzyme Q (ubiquinone) concentrations in patients treated with simvastatin. J Clin Pathol. 1993;46:1055-1057. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC501696/
- Yamamoto Y. Simultaneous detection of ubiquinol and ubiquinone in human plasma as a marker of oxidative stress. Anal Biochem. 1997 Jul 15;250(1):66-73. https://pubmed.ncbi.nlm.nih.gov/9234900/
- Zlatohlavek L, Vrablik M, Grauova B, Motykova E, Ceska R. The effect of coenzyme Q10 in statin myopathy. Neuro Endocrinol Lett. 2012;33 Suppl 2:98-101. https://pubmed.ncbi.nlm.nih.gov/23183519/
- Hanna M, Jaqua E, Nguyen V, Clay J. -s: Functions and Uses in Medicine. Perm J. 2022 Jun 29;26(2):89-97. doi: 10.7812/TPP/21.204. Epub 2022 Jun 17. PMID: 35933667; PMCID: PMC9662251. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662251/
- thiamine (B1) https://ods.od.nih.gov/factsheets/Thiamin-HealthProfessional/
- riboflavin (B2)https://ods.od.nih.gov/factsheets/Riboflavin-HealthProfessional/
- niacin (B3) https://ods.od.nih.gov/factsheets/Niacin-HealthProfessional/
- pantothenic acid (B5) https://ods.od.nih.gov/factsheets/PantothenicAcid-HealthProfessional/
- pyridoxine (B6) https://ods.od.nih.gov/factsheets/VitaminB6-HealthProfessional/
- biotin (B7) https://ods.od.nih.gov/factsheets/Biotin-HealthProfessional/
- folate (B9) https://ods.od.nih.gov/factsheets/Folate-HealthProfessional/
- cobalamin (B12) https://ods.od.nih.gov/factsheets/VitaminB12-HealthProfessional/